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Abstract. Rank Decoding is the main underlying problem in rank-
based cryptography. Based on this problem and quasi-cyclic versions of
it, very efficient schemes have been proposed recently, such as those in
the ROLLO and RQC submissions, which have reached the second round
of the NIST Post-Quantum Cryptography Standardization Process. Two
main approaches have been studied to solve the Rank Decoding prob-
lem: combinatorial ones and algebraic ones. While the former has been
studied extensively in [24] and [10], a better understanding of the latter
was recently obtained with [I1I] where it appeared that algebraic attacks
can often be more efficient than combinatorial ones for cryptographic pa-
rameters. In particular, the results of [11I] were based on Grébner basis
computations which led to complexity bounds slightly smaller than the
claimed security of ROLLO and RQC cryptosystems. This paper gives
substantial improvements upon this attack together with a much more
precise analysis of its complexity compared to the one in [I1]. Against
ROLLO-I-128, ROLLO-I-192, and ROLLO-I-256, our attack has bit com-
plexity respectively in 71, 87, and 151, to be compared to 117, 144, and
197 for the attack in [II]. Moreover, unlike this previous attack, ours
does not need generic Grobner basis algorithms since it only requires to
solve a linear system. This improvement relies upon a modeling slightly
different from the one in [I1] combined with a new modeling for a generic
MinRank instance. The latter modeling allows us to solve the MinRank
problem using only linear algebra as well and no longer generic Grobner
basis algorithms, in addition to this, this new algorithm enables us to
refine the analysis of MinRank’s complexity given in [38]. MinRank is
a problem of great interest for all multivariate-based cryptosystems, in-
cluding GeMSS and Rainbow, which are at the second round of the
aforementioned NIST competition; our new approach supersedes previ-
ous attacks for the MinRank problem.

Keywords: Post-quantum cryptography - NIST-PQC candidates - rank
metric code-based cryptography - algebraic attack.



1 Introduction

Rank metric code-based cryptography. In the last decade, rank metric
code-based cryptography has proved to be a powerful alternative to more tradi-
tional code-based cryptography based on the Hamming metric. This thread of
research started with the GPT cryptosystem [22] based on Gabidulin codes [21],
which are rank metric analogues of Reed-Solomon codes. However, the strong
algebraic structure of those codes was successfully exploited for attacking the
original GPT cryptosystem and its variants with the Overbeck attack [34] (see
for example [32] for one of the latest related developments). This has to be traced
back to the algebraic structure of Gabidulin codes that makes masking extremely
difficult; one can draw a parallel with the situation in the Hamming metric where
essentially all McEliece cryptosystems based on Reed-Solomon codes or variants
of them have been broken. However, recently a rank metric analogue of the
NTRU cryptosystem from [28] has been designed and studied, starting with the
pioneering paper [23]. Roughly speaking, the NTRU cryptosystem relies on a
lattice that has vectors of rather small Euclidean norm. It is precisely those
vectors that allow an efficient decoding/deciphering process. The decryption of
the cryptosystem proposed in [23] relies on LRPC codes that have rather short
vectors in the dual code, but this time for the rank metric. These vectors are
used for decoding in the rank metric. This cryptosystem can also be viewed as
the rank metric analogue of the MDPC cryptosystem [31] that relies on short
vectors in the dual code for the Hamming metric.

This new way of building rank metric code-based cryptosystems has led to
a sequence of proposals [23I255]6], culminating in submissions to the National
Institute of Standards and Technology (NIST) post-quantum competition [213],
whose security relies solely on the decoding problem in rank metric codes with a
ring structure similar to the ones encountered right now in lattice-based cryptog-
raphy. Interestingly enough, one can also build signature schemes using the rank
metric; even though early attempts which relied on masking the structure of a
code [26/9] have been broken [16], a promising recent approach [§] only considers
random matrices without structural masking.

Decoding Fgm-linear codes in Rank metric. In other words, in rank metric
code-based cryptography we are now only left with assessing the difficulty of
the decoding problem for the rank metric. The trend in rank metric code-based
cryptography has been to consider a particular form of codes that are linear codes
of length n over an extension Fgm of degree m of Iy, that is, F,m-linear subspaces
of Fym. Let (81, ..., Bm) be any basis of Fym as a Fy-vector space. Then words
of those codes can be interpreted as matrices with entries in the ground field F,
by viewing a vector © = (z1,...,7,) € Fj. as a matrix Mat(z) = (X;;);,; in
Fyt", where (Xij)1<i<m is the column vector formed by the coordinates of z;
in the basis (81, ..., 8m), that is, x; = 1. X1; + -+ - + B Xm;-



Then the “rank” metric d on Fim is the rank metric on the associated matrix
space, namely

d(z,y) :== |y — x|, where we define |x|:= Rank (Mat(x)).
Hereafter, we will use the following terminology.

Problem 1 ((m,n, k,r)-decoding problem).
Input: an Fym-basis (cy,...,¢x) of a subspace C of Fy..., an integer r € N,
and a vector y € Fy. at distance at most 7 of C (i.e. [y — ¢[ < r for some ¢ € C).
Output: ¢ € C and e € Fy,, such that y = c+ e and |e| < 7.

This problem is known as the Rank Decoding problem, written RD. It is equiv-
alent to the Rank Syndrome Decoding problem, written RSD, for which one
uses the parity check matrix of the code. There are two approaches to solve RD
instances: the combinatorial ones such as those in [24] and [10] and the algebraic
ones, such as in [II]. For some time it was thought that the combinatorial ap-
proach was the most threatening attack on such schemes especially when ¢ is
small and all the parameters rank-metric submissions, until it became apparent
in [I1] that even for ¢ = 2 the algebraic attacks outperform the combinatorial
ones. Roughly speaking, if the conjecture made in [T1] holds, the complexity of
solving by algebraic attacks the decoding problem is of order 20("1°87) ith a
constant depending on the rate R = k/n of the code.

Even if the decoding problem is not known to be NP-complete for these IFym-
linear codes, there is a randomized reduction to an NP-complete problem [27]
(namely to decoding in the Hamming metric). The region of parameters which
is of interest for the NIST submissions corresponds to m = @ (n), k = © (n) and

r=6(yn).

The MinRank problem. The MinRank problem was first mentioned in [13]
where its NP-completeness was also proven. We will consider here the homoge-
neous version of this problem which corresponds to

Problem 2 (MinRank problem).
Input: an integer r € N and K matrices M,..., M € F"*".
Output: field elements z1,x2,...,xx € F, that are not all zero such that

K
Rank (Z $1M1> S T.
i=1

It plays a central role in public key cryptography. Many multivariate schemes
are either directly based on the hardness of this problem [15] or strongly related
to it as in [35U37U36] or as in the NIST post-quantum competition candidates
Gui [I7], GeMSS [14] or Rainbow [I§]. It first appeared in this context as part
of an attack against the HFE cryptosystem [35] by Kipnis and Shamir[29]. Tt is
also central in rank metric code-based cryptography, because the RD problem
reduces to MinRank as explained in [I9] and actually the best algorithms for



solving this problem are really MinRank solvers taking advantage of the Fym
underlying structure as in [I1]. However the parameter region generally differs.
When the RD problem arising from rank metric schemes is treated as a MinRank
problem we generally have K = 6(n?) and r is rather small (often r = 6(y/n))
whereas for the multivariate cryptosystems K = 6(n) but r is much bigger.

The current best known algorithms for solving the MinRank problem have
exponential complexity. Many of them are obtained by an algebraic approach
too consisting in modeling the MinRank problem by a system of multivariate
polynomial equations and then solve it with Grobner basis techniques. The main
modelings are the Kipnis-Shamir modeling [29] and the minors modeling [20].
The complexity of solving MinRank using these modelings has been investigated
in [T9/20J38)]. In particular [38] shows that the bilinear system that arises from
the Kipnis-Shamir modeling behaves much better than generic bilinear systems
with respect to Grobner basis techniques.

Our contribution. In this paper, we follow on from the approach in [I1] and
propose a slightly different modeling to solve the RD problem. Roughly speaking
the algebraic approach followed by [II] is to set up a bilinear system which is
satisfied by the error we are looking for. This system is formed by two kinds
of variables, the “coefficient” variables and the “support” variables which is
implicitly the modeling considered in [33]. The breakthrough obtained in [I1]
was to realize that

— the coefficient variables have to satisfy “maximal minor” equations: the max-
imal minors of a certain r X (n — k — 1) matrix (i.e. the r X r minors) with
entries being linear forms in the coefficient variables have to be equal to 0.

— these maximal minors are themselves linear combinations of maximal minors
cr of an r x n matrix C' whose entries are the coefficient variables.

This gives a linear system involving the cr’s and allows to find the cp’s provided
that there are enough linear equations. Moreover the original bilinear system has
many solutions and there is some freedom of choosing the coefficient variables
and the support variables. With the choice made in [II] the information we
obtain in this way about the minors of C' is not enough to be able to recover
the coefficient variables directly (i.e. the entries of C'). In this case the last step
of the algebraic attack still has to compute a Grobner basis for the algebraic
system consisting of the original system plus the knowledge on the cy’s obtained
from the linear system.

The new approach followed in this paper uses the fact that there is a better
way to use the freedom on the coefficient variables and the support variables:
we can actually specify so many coefficient variables that all the remaining en-
tries that we do not know are essentially equal to some maximal minor ¢y of
C'. This approach allows to avoid completely the computation of the Grébner
basis: we obtain from the knowledge of the c¢p’s obtained from the aforemen-
tioned linear system the coefficient variables and plugging in theses values in
the original bilinear system it just remains to solve a linear system involving the



support variables. This new approach brings on a substantial speed-up in the
computations for solving the system. It results in the best practical efficiency
and complexity bounds that are currently known for the decoding problem; in
particular, it significantly improves upon the aforementioned similar approach
n [II]. We present attacks for ROLLO-I1-128, ROLLO-1-192, and ROLLO-I-256
with bit complexity respectively in 70, 86, and 158, to be compared to 117, 144,
and 197 for the attack in [II]. The difference with [II] is significant since as
there is no real quantum speed-up for solving linear systems, the best quantum
attacks for ROLLO-I-192 remained the quantum attack based on combinatorial
attacks, when our new attacks show that ROLLO parameters are broken and
need to be changed.

Our analysis is divided into two categories: the “overdetermined” and the
“underdetermined” case. An (m,n, k,r)-decoding instance is overdetermined if

the condition
n—k—1 n
r r

is fulfilled. This really corresponds to the case where we have enough linear
equations by our approach to find all the c¢r’s (and hence all the coefficient
variables). In that case we obtain a complexity in

0<m<"_p_k_1)("_p>wl> 2)
r r

operations in the field F;, where w is the constant of linear algebra and p =
max{i : i € {1. n} m("” irk 1) > (" 1) — 1} represents, in case the overdeter-
mined condition is comfortably fulfilled, the use of punctured codes. This
complexity clearly supersedes the previous results of [T1] in terms of complexity
and also by the fact that it does not require generic Grobner Basis algorithms.
In a rough way for r = O (y/n) (the type of parameters used for ROLLO and
RQC), the recent improvements on algebraic attacks can be seen as this: before
[TT] the complexity for solving RD involved a term in O(n?) in the upper part

of a binomial coefficient, the modeling in [II] replaced it by a term in O (n%>

whereas our new modeling involves a term in O(n) at a similar position. This
leads to a gain in the exponential coefficient of order 30 % compared to [I1] and
of order 50 % compared to approaches before [IT]. Notice that for ROLLO and
RQC only parameters with announced complexities 128 and 192 bits satisfied
condition (1) but not parameters with announced complexities 256 bits.

When condition (1) is not fulfilled, the instance can either be underdeter-
mined or be brought back to the overdetermined area by an hybrid approach
using exhaustive search with exponential complexity to guess few variables in
the system. In the underdetermined case, our approach is different from [IT].
Here we propose an approach using reduction to the MinRank problem and a
new way to solve it. Roughly speaking we start with a quadratic modeling of
MinRank that we call “support minors modeling” which is bilinear in the afore-
mentioned coefficient and support variables and linear in the so called “linear



variables”. The last ones are precisely the x;’s that appear in the MinRank
problem. Recall that the coefficient variables are the entries of a r x n matrix C'.
The crucial observation is now that for all positive integer b all maximal minors
of any (r + b) X n matrix obtained by adding to C' any b rows of ) . ;M are
equal to 0. These minors are themselves linear combinations of terms of the form
mcr where cp is a maximal minor of C and m a monomial of degree b in the
x;’s. We can predict the number of independent linear equations in the mer’s
we obtain this way and when the number of such equations is bigger than the
number of mcep’s we can recover their values and solve the MinRank problem
without computing Grébner bases. This new approach is not only effective in
the underdetermined case of the RD problem it can also be quite effective for
some multivariate proposals made to the NIST competition. In the case of the
RD problem, it improves the attacks on [7] made in [I1] for the parameter sets
with the largest values of r (corresponding to parameters claiming 256 bits of
security). The multivariate schemes that are affected by this new attack are for
instance GeMSS and Rainbow. On GeMSS it shows MinRank attacks together
with this new way of solving MinRank come close to the best known attacks
against this scheme. On Rainbow it outperforms slightly the best known attacks
for certain high security parameter sets.

At last, not only do these two new ways of solving algebraically the RD or
MinRank problem outperform previous algebraic approaches in certain parame-
ter regimes, they are also much better understood: we do not rely on heuristics
based on the the first degree fall as in [38/T1] to analyze its complexity, but it
really amounts to solve a linear system and understand the number of indepen-
dent linear equations that we obtain which is something for which we have been
able to give accurate formulas predicting the behavior we obtain experimentally.

2 Notation

In what follows, we use the following notation and definitions:

— Matrices and vectors are written in boldface font M.

— The transpose of a matrix M is denoted by MT.

— For a given ring R, the set of matrices with n rows, m columns and coeffi-
cients in R is denoted by R"*™.

— {1..n} stands for the set of integers from 1 to n.

— For a subset I C {1..n}, #I stands for the number of elements in I.

— For two subsets I C {1..n} and J C {1..m}, we write M ; for the submatrix
of M formed by its rows (resp. columns) with index in I (resp. J).

— We use the shorthand notations M, ; = My ,,y,7 and M. = My 1 n},
where M has m rows and n columns, and M ; for the entry in row ¢ and
column j.

— We denote the determinant of a matrix M by |M|. We also use a notation
inspired by the previous one for denoting the determinant of a submatrix,
|M|; ; denotes the determinant of the submatrix My ; and M/, ; denotes
the principal minor of M obtained by taking the determinant of M, ;.



m=1) is a basis

— a € Fym is a primitive element, that is to say that (1, ¢, ..., «
of Fym seen as an Fg-vector space.

— Forv = (v1,...,v,) € Fym, the support of v is the Fy-vector subspace of Fym
spanned by the vectors vy, ...,v,. Thus this support is the column space of
the matrix Mat(v) associated to v (for any choice of basis), and its dimension
is precisely Rank(Mat(v)).

— An [n, k] Fym-linear code is an F,m-linear subspace of Fy.. of dimension k.

— Unless otherwise specified, the decoding problem always refers to the Rank
Decoding problem.

3 Algebraic modeling of the MinRank and the decoding
problem

3.1 Modeling of MinRank

Here is the modeling for the MinRank problem that we consider, it is related to
the modeling used for decoding in the rank metric in [I1]. The starting point is
that, in order to solve the equation in Problem [2], we look for a nonzero solution
(8,C,x) e F™™" x Fp*" x FX of

K
SC =Y ;M. (3)

i=1

S is an unknown matrix whose columns give a basis for the column space of a
matrix of rank < r we are looking for (i.e. Zfil ;M ;). The i-th column of C
represents the coordinates of the i-th column of the aforementioned matrix in
this basis. We call the entries of S the support variables, and the entries of C
the coefficient variables. Note that in the above equation, the variables z; only
occur linearly. As such, we will dub them the linear variables.

Let r; be the j-th row of the matrix ZZK:1 x; M ;. Equation implies that
each row r; is in the rowspace of C (or in coding theoretic terms 7; should
belong to the code C generated by C, that is C := {uC,u € Fy}). This implies
that the following (r 4 1) x n matrix C’ is of rank < 7:

N
c;:(g).

Therefore, all the maximal minors of this matrix should be equal to 0. Notice
that these maximal minors can be expressed via cofactor expansion with respect
to their first row. In this way, they can be seen as bilinear forms in the variables
x; and the r x r minors of C. These minors will play a fundamental role in the
whole paper and we will use the following notation for them.

Notation 1 Let T' C {1..n} with #T =r. We let
Cr = |C|*7T

be the maximal minor of C corresponding to the columns of C that belong to T'.



These considerations lead to the following algebraic modeling.

Modeling 1 (Support Minors modeling) We consider the system of bilin-
ear equations, given by canceling the maximal minors of the m matrices C; :

{f - 0’]‘ € MaxMinors <’(:1> e {1..m}} . (4)

This system contains:

— m(ril) bilinear equations with coefficients in Iy,

- K+ (:) unknowns: & = (x1,- -+ ,xx) and the cp’s, T C {1..n} with #T =r.
We search for the solutions x;,cr’s in Fy.
Remark 1.

1. One of the point of having the cr as unknowns instead of the coefficients Cj;
of C is that, if we solve directly in the z; and the C;; variables, then there
are actually plenty of solutions to since when (z, C) is a solution for it,
then (z, AC) is also a solution for any invertible matrix A in F;*". With the
cr variables we only expect a space of dimension 1 for the ¢y corresponding
to the transformation ¢r — |A| ¢y that maps a given solution of to a
new one.

2. Another benefit brought by replacing the Cj; variables by the c7’s is of course
that it brings a big saving in the number of possible monomials for writing
the algebraic system (about 7! times less). This allows for instance for
solving this system by direct linearization when the number of equations of
the previous modeling is larger than or equal to the number of different z;cr
monomials minus 1, namely when

m(ril>2K<:)—1. (5)

This turns out to be “almost” the case for several multivariate cryptosystem
proposals based on the MinRank problem where K is generally of the same
order as m and n.

3.2 The approach followed in [11] to solve the decoding problem

In what follows, we consider the (m,n, k,r)-decoding problem for a code C of
length n, dimension k over F;m and assume we have received y € Fy,. at distance
r from C and look for ¢ € C and e such that y = ¢+ e and |e| = r. We will
assume in what follows that there is a unique solution to this problem (which
is relevant for our cryptographic schemes). The starting point is the Ourivksi-
Johansson approach, consisting in considering the linear code C=C+ (y). By
construction, e belongs to C as well as all its multiples Ae, A € Fym. Looking for
non-zero codewords in C of rank weight r has at least ¢""* — 1 different solutions,
namely all the Ae for X € 5.



It is readily seen that finding such codewords can be done by solving the (ho-
mogeneous) MinRank problem with M; := Mat(a’~'¢;) (we adopt a bivariate
indexing of the M ;’s which is more convenient here), for (ij) € {1..m}x{1..k+1}
and where ¢y, -+, cp41 is an Fym-basis of C. This is a consequence of the fact
that the a’~'¢;’s form an F,-basis of C. However, the problem with this ap-
proach is that K = (k+ 1)m which is of order £2(n?) for the parameters relevant
to cryptography. This is much more than for the multivariate cryptosystems
based on MinRank and is far from being satisfied here. However, as observed
in [I1], it turns out in this particular case, it is possible because of the Fym
linear structure of the code, to give an algebraic modeling that only involves the
coefficients variables, that is the entries of C. It is obtained by introducing a
parity-check matrix for C, that is a matrix H whose kernel is C"

C={celFy.:cHT =0}.
In our Fym linear setting the solution e we are looking for can be written as
e=(la...a™ 1) S8C, (6)

where S € F"*" and C' € F;*" play the same role as in the previous subsection:
S represents a basis of the support of e in (F;”)r and C' the coordinates of e in

this basis. By writing that e should belong to C we obtain that
(la ozm_l) SCH™ =0,_;_1. (7)

The algebraic system involving only the coefficient variables follows immediately
from this.

Proposition 1 ([11I], Theorem 2). The mazimal minors of the r x (n—k—1)
matriz CHT are all equal to 0.

Proof. Consider the following vector in Fy: e’ := (1 Q... am’l) S whose entries
generate (over F,) the subspace generated by the entries of e (i.e. its support).
Substituting (1 a...a™" ') S for €' in (7)) yields

BICHT = On—k—1~

This shows that the r rows of CHT are not independent and that the r x n
matrix CHT is of rank < r — 1. O

These minors CHT are polynomials in the entries of C' with coefficients in
F4m. Since these entries belong to F,, the nullity of each minor gives m algebraic
equations corresponding to polynomials with coefficients in IF,. This involves the
following operation

Notation 2 Let S := {} ;aijm;; = 0,1 < i < N} be a set of polynomial
equations where the m;;’s are the monomials in the unknowns that are assumed
to belong to Iy, whereas the a;;’s are known coefficients that belong to Fgm. We



define the a;j,’s as a;; = ZZL:_OI aijkak, where the a;j1’s belong to F,. From this
we can define the system “unfolding” over Fy as

UnFold (§) := ¢ > ajpmi; =0,1<i<N,0<k<m-—1
J

The important point is that the solutions of S over I, are exactly the solutions
of UnFold (S) over [, so that in that sense the two systems are equivalent.
By using the Cauchy-Binet formula, it is proved [11] Prop. 1] that the max-
imal minors of CHT, which are polynomials of degree < r in the coefficient
variables Cj;, can actually be expressed as linear combinations of the cr’s. In

other words we obtain m("_f_l) linear equations over F, by “unfolding” the
(n—k—l

- ) maximal minors of CHT. We denote such a system by

UnFold (MaxMinors(CHT)). (8)

It is straightforward to check that some variables in C' and S can be specialized.
The choice which is made in [I1] is to specialize S with its r first rows equal
to the identity (S, = I,), its first column to 1T = (1,0,...,0)T and C
has its first column equal to 17. It is proved in [II}, Section 3.3] that if the first
coordinate of e is nonzero and the top r x r block of S is invertible, then the
solution of the previous specialized system is also a solution of the system without
specialization. Moreover, this will always be the case up to a permutation of the
coordinates of the codewords or a change of F,m-basis.

It is proved in [II, Prop. 2] that a degree-r Grébner basis of the unfolded
polynomials MaxMinors can be obtained by solving the corresponding linear
system in the cp’s.

However, this strategy of specialization does not reveal directly the entries of
C (it only reveals the values of the ¢r’s). To finish the calculation it still remains
to compute a Grébner basis of the whole algebraic system as explained in [I1]
Step 5, §6.1]). There is a simple way to avoid this computation by specializing
the variables of C' in a different way. This is the new approach we will explain
now.

3.3 The new approach to solve the decoding problem : specializing
the identity in C

As for the previous approach, we notice that if (S, C) is a solution of @ then
(SA™!, AC) is also a solution of the same system for any invertible matrix A in
[F;*". Now, in the case where the first 7 columns of a solution C form a invertible
matrix, we will still have a solution with the specialization

c=(I,C.

We can also specialize the first column of S to 1T = (1 0... O)T. If the first »
columns of C' are not independent, it suffices as in [II], Algorithm 1] to make

10



several different attempts of choosing r columns. The point of this specialization
is that

— the corresponding cr’s are equal to the entries Cj; of C up to an unessential
factor (—1)"*" whenever T' = {1..r}\{i} U {j} for any i € {l.r} and j €
{r + 1..n}. This follows on the spot by writing the cofactor expansion of
the minor cr = |C[, 4 ,y\(ijugyy- Solving the linear system in the cr’s
corresponding to yields now directly the coefficient variables C;;. This
avoids the subsequent Grobner basis computation, since once we have C we
obtain S directly by solving which has become a linear system.

— it is readily shown that any solution of is actually a projection on the
Cj; variables of a solution (S, C) of the whole system (see Proposition [3)).
This justifies the whole approach.

In other words we are interested here in the following modeling

Modeling 2 We consider the system of linear equations, given by unfolding all
mazimal minors of (I, C") HT:

{ = 0|1 € UnFold (MaxMinors (I, ') HT)) }. 9)

This system contains:
- m(n_f_l) linear equations with coefficients in F,
— (:f) — 1 unknowns: the cr’s, T C {1..n} with #T =r, T # {1l..r}.

We search for the solutions cr’s in F.

Note that from the specialization, ¢y, ,3 = 1 is not an unknown.

For the reader’s convenience, let us recall the specific form of these equations
which is obtained by unfolding the following polynomials (see [I1, Prop. 2] and
its proof).

Proposition 2. The system MaxMinors(CHT) contains (”_ff_l) polynomi-
als of degree v over Fom , indexed by the subsets J C {1..n—k—1} of size r, that
are the

Py = Z (_I)UJ(TQ) |R|T1,J\T2 cr, (10)
Tlc{]...k+1}7T2CJ7

#T1+#To=r
T=T, U(T2+k+1)

where the sum is over all subsets Ty C {1..k + 1} and Ty subset of J, with
#T1 +#To =r, and o5(T3) is an integer depending on Ty and J. We denote by
To+k+1theset {i+k+1:i€Ts}.

Let us show now that the solutions of the linear system obtained this way
are projections of the solutions of the original system. For this purpose, let us
bring in

11



— The original system over F,m obtained with the aforementioned special-
ization

Fe={(la -am (1T S)(I,C)H =0,_4_1},  (11)

where 1T = (1 0... O)T, S = (lT S’) and C = (IT Cl).
— The system in the coefficient variables we are interested in

Fur = {f = 0| € MaxMinors (1, ¢') HT) }, (12)
— Let Vi, (Fc) be the set of solutions of with all variables in F,, that is
Ve, (Fc) =
{(87.C7) e R0 (1 amY) (1T 87) (I, C*) HT = 0}

(13)
— Let Vi, (Far) be the set of solutions of with all variables in F, i.e.

Vi, (Fu) = {C* € qu("_r) : Rankg,,, ((IT C’*) HT) < r} .

With these notations at hand, we will now show that solving the decoding
problem is left to solve the MaxMinors system, that depends only on the C
variables.

Proposition 3. If e can be uniquely decoded and has rank r, then
Ve, (Fur) = {C* €T/ 1387 e BP0 st (S*,C) € Vi, (]—'c)}. (14)

This means that the set Vg, (Far) is the projection of the set Vg, (Fc) on the last
r(n —r) coordinates.

Proof. Let (8*,C") € Vg, (Fc), then the non-zero vector
(185...8)=QQa---am )17 8%)

belongs to the left kernel of the matrix (I r C*) HT. Hence this matrix has rank
less than 7, and C™ € Vg, (Far). Reciprocally, if C* € Vg, (Far), then the matrix
(I r C’*) HT has rank less than r, hence its left kernel over Fym contains a non
zero element (S5,...,5%) = (1, ,...,a™ 1)S" with the coefficients of $* in F,.
But S} cannot be zero, as it would mean that (0,53,...,55) (I, C*) is an error
of weight less than r solution of the decoding problem, and we assumed there
is only one error of weight exactly r solution of the decoding problem. Then,
(St7(S35,...,85),C") € Vi, (Fo). 0

4 Solving the rank decoding problem: overdetermined
case

In this section, we show that, when the number of equations is sufficiently large,
we can solve the system given in modeling [2| with only linear algebra computa-
tions, by linearization on the cp’s.
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4.1 The overdetermined case

The linear system given in Modeling [2] is described by the following matrix
MaxMin with rows indexed by (J,3) : J C {l.n—k—1},#J =r,0<i<m—1
and columns indexed by T C {1..n} of size r, with the entry in row (J,7) and
column 7" being the coefficient in o of the element + \R\Tl) N1, € Fgm. More
precisely, we have

0 it ¢ J
0] (=D)7 T (Rl g, ) T2 C,
with Ty =T {l.k+1},

and Tp=(TnN{k+2.n})—(k+1).

MuMm@mﬂ:{ (15)

The matrix MaxMin can have rank (:f) — 1 at most; indeed if it had a maximal
rank of (:f), this would imply that all c¢p’s are equal to 0, which is in contradiction

with the assumption ¢y 3 = 1.

Proposition 4. If MaxMin has rank () —1 (which implies that m("fffl) >

(") — 1), then the right kernel of MaxMin contains only one element (c 1) €

T
n

Fq"" with value 1 on its component corresponding to c{y. ,y. The components ¢
of this vector contain the values of the cr’s, T # {1..r}. This gives in particular
the values of all the variables C; ; = (—1)T+ic{1_r}\{i}u{j}.

Proof. If MaxMin has rank (:f) — 1, then as there is a solution to the system,
a row echelon form of the matrix has the shape

(Ic)l —CT>
0 0

with ¢ a vector in F, of size (:f) — 1: we cannot get a jump in the stair of the
echelon form as it would imply that Eq. 1) has no solution. Then (c 1) is in
the right kernel of MaxMin. a

It is then easy to recover the variables S from by linear algebra. The fol-
lowing algorithm recovers the error if there is one solution to the system .
It is shown in [II], Algorithm 1] how to deal with the other cases, and this can
be easily adapted to the specialization considered in this paper.

Proposition 5. When m(”_’:_l) > (") — 1 and MaxMin has rank () — 1,

then Algorithm [1] recovers the error in complezity

w—1
O<m(n—k—1) (n) ) (16)
r r
operations in the field Fy, where w is the constant of linear algebra.

13



Input: Code C, vector y at distance r from C, such that m ("~ *71) > (") — 1
and MaxMin has rank (’:) -1

Output: The error e of weight r such that y —e € C

Construct MaxMin, the m (" *~") x (*) matrix over F, associated to the
system MaxMinors Eq. 1) ;

Let (c 1) be the only such vector in the right kernel of MaxMin ;

Compute the values C* = (cj ;)i,; from ¢;

Compute the values (S7,...,57) € Fym by solving the linear system

(S1,...,8)C"HT =0
and taking the unique value with ST = 1;
return (1,55,...,57)C" ;
Algorithm 1: (m,n, k,r)-decoding in the overdetermined case.

Proof. To recover the error, the most consuming part is the computation of

m n—k—1 n
the left kernel of the matrix MaxMin in F, " )X(T), in the case where
m(" k- 1) > (:f) — 1. This can be done by computing an echelon form of
Malen in this case the complexity is bounded by Eq. . a

We ran a lot of experiments with random codes C such that m ("~ f h >
(T) — 1, and the matrix MaxMin was always of rank (T) — 1. That is why we
propose the following heuristic about the rank of MaxMin.

Heuristic 1 (Overdetermined case) When m(""*™") > () — 1, with over-

whelming probability, the rank of the matrix MaxMin is (f) -1

Figure [1] gives the experimental results we obtained for ¢ = 2, r = 3,4,5 and
different values of n. We choose to keep m prime and close to n/1.18 to have a
data set containing the parameters of the ROLLO-I cryptosystem. We choose for
k the minimum between 2 and the largest value leading to an overdetermined

2
case. We have k = Z as soon as n > 22 for r = 3, n > 36 for r = 4, n > 58 for

r = 5. The figure sﬁows that the estimated complexity is a good upper bound
for the computation’s complexity. It also shows that this upper bound is not
tight. Note that the experimental values are the complexity of the whole attack,
including the build of the the matrix that require to compute the minors of R.
Hence for small values of n, it may happen that this part of the attack takes
more time than the solving of the linear system. This explains why, for r = 3
and n < 28, the experimental curve is above the theoretical one.

Figure [2| shows the theoretical complexity, in the case where n = 2k and m
is prime and close to n/1.18. We take those parameters because they fit with
the parameters in the cryptosystem ROLLO-I. When the parameters (m, n, k, 1)
do not satisfy the condition m(" f D> (T) — 1, we do not give the complex-
ity. The graph starts from the first value of n Where (n/1.18,n,2k,r) is in the
overdetermined case. We can see that theoretically, the cryptosystem ROLLO-
I-128 with parameters (79,94,47,5) needs 273 bit operations to decode an error,
instead of the announced 2'?® bits of security. In the same way, ROLLO-I-192

14



Complexity for r = 3,7 = 4,r = 5 in the overdetermined cases
75 T T T

70 - k=2,r=
65 -

T T T T
4

60 I i —— Theoretical r = 3

—— Theoretical r = 4

55 - B —— Theoretical r = 5

50 |- — | —+— Experimental r = 5
—— Experimental r = 4
—+— Experimental » = 3

log,(C)

45

40
357

3020

S

Fig. 1. Theoretical vs Experimental value of the complexity of the computation. The
computations are done using magma v2.22-2 on a machine with a Intel® Xeon®
2.00GHz processor (Any mention of commercial products is for information only and
does not imply endorsement by NIST). We measure the experimental complexity in
terms of clock cycles of the CPU, given by the magma function ClockCycles(). The
theoretical value is the binary logarithm of m("i’ffl) (7:)2‘81_1. The experimental val-
ues are the binary logaithms of the aforementionned experimental complexity m is the
largest prime less than n/1.18, and k the minimum of n/2 (right part of the graph)
and the largest value for which the system is overdetermined (left part).

with parameters (89,106,53,6) would have 86 bits of security instead of 192.
The parameters (113,134,67,7) for ROLLO-I-256 are not in the overdetermined
case.

There are two classical improvements that can be used to lower the complex-
ity of solving an algebraic system. The first one consists in selecting a subset
of all equations, when some of them are redundant, see Section The second
one is the hybrid attack that will be explained in Section

4.2 Improvement in the “super”-overdetermined case by puncturing

We consider the case when the system is “super”-overdetermined, i.e. when the
number of rows in MaxMin is really larger than the number of columns. In that
case, it is not necessary to consider all equations, we just need the minimum
number of them to be able to find the solution.

To select the good equations (i.e. the ones that are likely to be linearly
independent), we can take the system MaxMinors obtained by considering code
C punctured on the p last coordinates, instead of the entire code. Puncturing
code C' is equivalent to shortening the dual code, i.e. considering the system

MaxMinors (C*,{l..nfp}(HT){1..n7p},{1..n7k717p}) . (17)
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Theoretical complexity for r = 5,6, 7 in the overdetermined cases when n = 2k.
120 T

110 -
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T

90
86 -

80 -

T

log,(C)
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70 -

| |
6020 40 60 80 100 120 140 160 180 200

Fig. 2. Theoretical value of the complexity of the computation in the overdetermined
cases, which is the binary logarithm of m(" k=1)(m #8171 s the largest prime less
than n/1.18, n = 2k. The axis “Rl, R2, RS” correspond to the values of n for the
cryptosystems ROLLO-1-128; ROLLO 1-192 and ROLLO-I-256.

as we take H is systematic form on the last coordinates. This system is formed by
a sub-sequence of polynomials in MaxMinors that do not contains the variables
¢ij withn—p+1 < j < n. This system contains m(" p—k— 1) equations in ("rp)
variables C, r with T C {1.n —p — k — 1}. If we take the maximal value of
p such that m(” prk 1) > (”Tp) — 1, we can still apply Algorithm I but the

complexity is reduced for instance to

w—1
Cp—k—1 _
o(n(" ) w
r r
operations in the field F,.

4.3 Reducing to the overdetermined case: hybrid attack

Another classical improvement consists in using an hybrid approach mixing ex-
haustive search and linear resolution, like in [I2]. This consists in specializing
some variables of the system to reduce an underdetermined case to an overde-
termined one.

For instance, if we specialize a columns of the matrix C, we are left with
solving ¢*" linear systems MaxMin of size m(”fffl) x ("7%), and the global
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Theoretical complexity for r =5...9 when n = 2k.
280
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n

Fig. 3. Theoretical value of the complexity of RD in the overdetermined case (using
punctured codes or specialization). C is the smallest value between and . m is
the largest prime less than n/1.18, n = 2k. The dashed axes correspond to the values
of n for the cryptosystems ROLLO-I-128; ROLLO-I-192 and ROLLO-I-256.

o <qm(”’:1> (nra>w1> 9

operations in the field IF,. In order to minimize the previous complexity , one
chooses a to be the smallest integer such that the condition m("_]:_l) > (";“) -1
is fulfilled. Figure |3| page [L7] gives the best theoretical complexities obtained for
r=>5...9 with the best values of a and p, for n = 2k. Table[I] page [26] gives the
complexities of our attack (column “This paper”) for all the parameters in the
ROLLO and RQC submissions to the NIST competition; for the sake of clarity,
we give the previous complexity from [I1].

cost is

5 Solving Rank Decoding and MinRank problems:
underdetermined case

This section analyzes the support minors modeling approach (Modeling .

5.1 Solving by direct linearization

The number of monomials that can appear in Modeling [1|is K (7:) whereas the

number of equations is m(Tj_l). When the solution space of is of dimension
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1, we expect to solve it by direct linearization whenever:

m(ril) 2K(Z> ~1. (20)

We did a lot of experiments as explained in Section [5.6] and they suggest that
it is the case.

Remark 2. Note that, in what follows, the Eq. will sometimes be referred
as the “b =1 case”.

5.2 Solving Support Minors Modeling at a higher degree

In the case where Eq. does not hold we may produce a generalized version of
Support Minors Modeling, multiplying the Support Minors Modeling equations
by homogeneous degree b — 1 monomials in the linear variables, resulting in
a system of equations that are homogeneous degree 1 in the variables ¢y and
homogeneous degree b in the variables x;. The strategy will again be to linearize
over monomials. The most common cases are ¢ = 2 and ¢ > b. In the former case
there are Y0_, (") (%) monomials, and in the latter case there are () (¥F71).
For the time being, we will focus on the simpler ¢ > b case. There is however
an unavoidable complication which occurs whenever we consider b > q. Unlike
in the simpler b = 1 case, for b > 2 we cannot assume that all m(ril) (K;;bl_Q)
equations we produce in this way are linearly independent up to the point where
we can solve the system by linearization. In fact, we can construct explicit linear
relations between the equations starting at b = 2.

This comes from determinantal identities involving maximal minors of ma-
trices whose first rows are some of the r;’s concatenated with C'. For instance
we may write the trivial identity for any subset J of columns of size r + 2:

Ty

T

C

T35
Tk

C

=0.
*,J

+
*,J

Notice that this gives trivially a relation between certain equations correspond-

ing to b = 2 since a cofactor expansion along the first row of ’%ﬂ’ shows that
*,J

this maximal minor is indeed a linear combination of terms which is the mul-
Tk
C

(in other words an equation corresponding to b = 2). A similar result holds for
Tk
5

C

tiplication of a linear variable x; with a maximal minor of the matrix

where a cofactor expansion along the first row yields terms formed by
*,J

C

result can be generalized by considering symmetric tensors (S}, ... ;. )i1<j,<m of

a linear variable z; multiplied by a maximal minor of the matrix (Tj > This

1<j-<m
dimension m of rank b > 2 over F,. Recall that these are tensors that satisfy

Sjy o =S

1,0 Jo(1)s " s Jo(b)
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for any permutation o acting on {1..b}. This is a vector space that is clearly
isomorphic to the space of homogeneous polynomials of degree b in y1, -+, ym
over Fy. The dimension of this space is therefore (m+;’ _1). We namely have

Proposition 6. For any symmetric tensor (S, ... j,)i<ji<m of dimension m of

1<jp<m
rank b > 2 over F, we have
m m Ti1
> D Sivedn | vy | =0
Jji=1 Jo=1 *,J

where J is any subset of {1..n} of size r + b.

Ti1
is equal to 0 whenever at
C Ix,J

least two of the j;’s are equal. The left-hand sum reduces therefore to a sum of
To (1)

To(ip)
C

Proof. Notice first that the maximal minor

where all the j;’s are different.
*,J
Notice now that from the fact that S is a symmetric tensor we have

terms of the form ) s So(jy), - .o()

To(41) To(31)
E : SU(j1),"'»<7(jb) To(jp) = Sjlv"'Jb E : To(ip)
oc€Sy c *,J oc€Sy *,J

=0

because the determinant is an alternating form and there as many odd and even
permutations in the symmetric group of order b when b > 2. O

This proposition can be used to understand the dimension D of the space of
linear equations we obtain after linearizing the equations we obtain for a certain
b. For instance for b = 2 we obtain m(rf_l)K linear equations (they are obtained
by linearizing the equations resulting from multiplying all the equations of the
support minors modeling by one of the K linear variables). However as shown by
Proposition@all of these equations are not independent and we have (TZQ) (m; 1)
linear relations coming from all relations of the kind

> i Sk

j=1k=1

= 0. 21
=0 (21)

T
Tk
C
In our experiments, these relations turnt out to be independent yielding that the

dimension D of this space should not be greater than m(,},)K — (1)) ("5 h.
Experimentally, we observed that we indeed had

n n m+1
Dexp = K — .
P m(r+1> <T+2>< 2 >

For larger values of b things get more complicated but again Proposition [6] plays
a key role here. Consider for example the case b = 3. We have in this case
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m(Til) (K;r 1) equations obtained by multiplying all the equations of the support

minors modeling by monomials of degree 2 in the linear variables. Again these
equations are not all independent, there are (m;' 1) (TL)K equations obtained
by mutiplying all the linear relations between the b = 2 equations derived from

by a linear variable, they are of the form

m

i)Y Sik

j=1k=1

Tj
Tk

C

= 0. 22
. (22)

But all these linear relations are themselves not independent as can be checked

by using Proposition [6] with b = 3, we namely have for any symmetric tensor
Sjii of rank 3:
m

j=1lk

T4
T3
Tk
C

NE

Sijk =0. (23)

*,J

I
-

This induces linear relations among the equations (22), as can be verified by a
cofactor expansion along the first row of the left-hand term of which yields
an equation of the form

where the S* = (SJZ k) 1<j<m are symmetric tensors of order 2. We would then
T1<k<m

expect that the dimension of the set of linear equations obtained from is
only (m2+1) (TZQ)K— (riS) (m;r2) yielding an overall dimension D of the linearized
system of order

p=o( 1) () - ()G ) (1) (57)

which is precisely what we observe experimentally. This argument extends also
to higher values of b, so that, if linear relations of the form considered above
are the only relevant linear relations, then the number of linearly independent
equations available for linearization at a given value of b is:

Heuristic 2
b ) .
B i1 ™ m+i—1\/K+b—i—-1
Dexp =3 (~1) <7~ - z) < i b—i ' (24)
i=1

Experimentally, we found this to be the case with overwhelming probability
(see Section [5.6) with the only general exceptions being:

1. When Deyp, exceeds the number of monomials for a smaller value of b, typ-
ically 1, the number of equations is observed to be equal to the number of
monomials for all higher values of b as well, even if D¢y does not exceed the
total number of monomials at these higher values of b.
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2. When the underlying MinRank Problem has a nontrivial solution and can-
not be solved a b = 1, we find the maximum number of linearly independent
equations is not the total number of monomials but is less by 1. This is
expected, since when the underlying MinRank problem has a nontrivial so-
lution, then the Support Minors Modeling equations have a 1 dimensional
solution space.

3. When b > r + 2, the equations are not any more linearly independent, and
we give an explanation in Section [5.4]

In summary, in the general case, we expect to be able to linearize at degree
b whenever b < r + 2 and

O e ()

Note that, for b = 1, we recover the result . As this system is very sparse, with
K (r 4+ 1) monomials per equation, one can solve it using Wiedemann algorithm
[39]; thus the complexity to solve MinRank problem is

ofsorn(@E))

where b is the smallest positive integer so that the condition is fulfilled.

5.3 The q = 2 case

The same considerations apply in the ¢ = 2 case, but due to the field equations,
x? = x;, for systems with b > 2, a number of monomials will collapse to a lower
degree. This results in a system which is no longer homogeneous. Thus, in this
case it is most profitable to combine the equations obtained at a given value of
b with those produced using all smaller values of b. Similar considerations to the

general case imply that as long as b < r + 2 we will have

=

to linearize the

> (1)(5)

Jj=1

equations with whic

monomials that occur at a given value of b. We therefore expect to be able
to solve by linearization when b < r + 2 and b is large enough that

()5 =i () (T)S) e

J
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Similarly to the general case for any ¢ described in the previous section, the
complexity to solve MinRank problem when ¢ = 2 is

ol kr+1) zb: <7:> (f) (29)

j=1

where b is the smallest positive integer so that the condition is fulfilled.

5.4 Toward the b > r + 2 case

We can also construct additional nontrivial linear relations starting at b = r+ 2.
The simplest example of this sort of linear relation occurs when m > r + 1.
Note that each of the Support Minors modeling equations at b = 1 is bilinear
in the z; variables and a subset consisting of » + 1 of the variables c¢r. Note
also, that there are a total of m equations derived from the same subset (one
for each row of Zfio x;M; .) Therefore, if we consider the Jacobian of the b =1
equations with respect to the variables cr, the m equations involving only r + 1
of the variables ¢y will form a submatrix with m rows and only r 4+ 1 nonzero
columns. Using a Cramer-like formula, we can therefore construct left kernel
vectors for these equations; its coefficients would be degree r + 1 polynomials
in the x; variables. Multiplying the equations by this kernel vector will produce
zero, because the b = 1 equations are homogeneous, and multiplying equations
from a bilinear system by a kernel vector of the Jacobian of that system cancels
all the highest degree terms. This suggests that Eq. needs to be modified
when we consider values of b that are r + 2 or greater. These additional linear
relations do not appear to be relevant in the most interesting range of b for
attacks on any of the cryptosystems considered, however.

5.5 Improvements for Generic Minrank

The two classical improvements Section in the “super”-overdetermined cases
the hybrid attack and Section [£.3] can also apply for Generic Minrank.

We can consider applying the Support Minors Modeling techniques to sub-
matrices Zf; Mz; of Zszl M ,;z;. Note that if Zfil M ,z; has rank less than
or equal to 7, so does Zfil Mxz; , so assuming we have a unique solution z; to
both systems of equations, it will be the same. Generically, we will keep a unique
solution in the smaller system as long as the decoding problem has a unique so-
lution, i.e. as long as the Johnson bound K < (m — r)(n — r) is satisfied.

We generally find that the most beneficial settings use matrices with all m
rows, but only n’ < n of the columns. This corresponds to a puncturing of the
corresponding Fy matrix code. It is always beneficial for the attacker to reduce
n/ to the minimum value allowing linearization at a given degree b, however, it
can sometimes lead to an even lower complexity to reduce n’ further and solve
at a higher degree b.
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On the other side, we can run exhaustive search on a variables z; in IF; and
solve ¢ systems with a smaller value of b, so that the resulting complexity is
smaller than solving directly the system with a higher value of . This optimiza-
tion is considered in the attack against ROLLO-I-256 (see Table ; more detail
about this example are given in Section [6.1

5.6 Experimental results for Generic Minrank

We verified experimentally that the value of Deyp, correctly predicts the number
of linearly independent polynomials. We constructed random systems (with and
without a solution) for ¢ = 2,13, with m = 7,8, r = 2,3, n = r + 3,r +
4,7r+5, K =3,...,20. In most of the cases, the number of linearly independent
polynomials was as expected. For ¢ = 13, we had a few number of non-generic
systems (usually less than 1% over 1000 random sampling), and only in square
cases where the matrices have a predicted rank equal to the number of columns.
For ¢ = 2 we had a higher probability of linear dependences, due to the fact that
over a such small field, random matrices have a non-trivial probability to be non
invertible. Anyway, as soon as the field is big enough or the number Deyy, is large
compared to the number of columns, 100% of our experiments succeeded over
1000 samples.

5.7 Using Support Minors Modeling in conjunction with MaxMin
for RD

Recall that from MaxMin, we obtain m(”flrC 71) homogeneous linear equations
in the variables cy. These can be used to produce equations over the same
monomials as used for Support Minors Modeling with K = mk + 1. In the
q > b case, this can be done by multiplying the equations from MaxMin by
homogeneous degree b monomials in the variables z;. In the ¢ = 2 case this
can be done by multiplying the MaxMin equations by monomials of degree b or
less. With all the arguments mentioned above and the experiments mentioned
in Section we can make a similar heuristic as Heuristic [1} this suggests that
linearization is possible for ¢ > b, 0 < b < r + 2 whenever:

()("") s
m<n - f - 1) <mkb+ b) . é(_l)m (T i Z) <m —I—ii - 1) (mkb—i—_bi— z)

(30)
and for ¢ =2, 0 < b < r + 2 whenever:

Ay —1< B.+C (31)
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where

=S 0)
Y G I))

e $E O (1))

For the latter, it leads to a complexity of
O ((By + Cb)Azjfl) (32)

where b is the smallest positive integer so that the condition is fulfilled. This
complexity formula correspond to solving a linear system with A, unknowns and
By + Cp equations, recall that w is the constant of linear algebra.

One notices that for a large range of parameters, this system is particularly
sparse, so one could take advantage of that to use Wiedemann algorithm [39].
More precisely, for values of m, n, r and k of ROLLO or RQC parameters (see
Table 4| and Table [5)) for which the condition is fulfilled, we typically find
that b~ r.

In this case, By equations consist of ( monomials, C}, equations consist
of (mk 4+ 1)(r + 1) monomials, and the total space of monomials is of size Ap.
The Wiedemann’s algorithm complexity can be written in term of the average
number of monomials per equation, in our case it is

k+:+1)

By (M) + Cy(mk + 1)(r + 1)
By + C,

Thus the linearized system at degree b is sufficiently sparse that Wiedemann
outperforms Strassen for b > 2. Therefore the complexity of support minors
modeling bootstrapping MaxMin for RD is

By (") 4+ Cy(mk + 1) (r + 1)
0 ( B 4G, A§> (33)

where b is still the smallest positive integer so that the condition is fulfilled.
A similar formula applies for the case ¢ > b.
5.8 Last step of the attack

To end the attack on MinRank using Support Minors modeling or the attack on
Rank Decoding using MaxMinors modeling in conjunction with Support Minors
modeling, one needs to find the affectations for each unknowns. Indeed, unlike
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the case where one uses only MaxMinors modeling with the specialization in
C (see Section , the direct linearization does not lead to affectations of the
form ¢; ; = p;; where ; ; are elements in F,. In fact, with the Support Minors
modeling one gets affectations of the form

% =p el

where the z%’s are monomials of degree b — 1 in the x;’s variables.

In order to extract the values of all the x;’s and thus finish the attack, one
needs to specialize 1 = 1, this is possible as long as z; # 0 since the solution
space has dimension 1; if this specialization does not lead to a unique solution,
one tries with zo and so on. Then, one computes quotients of the form

Ty 212%Ci4 o

= ——220 deg(z®)=b0-2 (34)

A .
X xr|xr 010710

for all the values of [ in {2..K} with a fixed minor ¢;, j,. Doing so, one gets
the values of all the x;’s and thus finish the attack. This works as long as the
minor ¢, j, of C' chosen is non-zero, if it is, one uses another one, and so on; our
experiments always worked with one or two minors.

6 Complexity of the attacks for different cryptosystems
and comparison with generic Grobner basis approaches

6.1 Attacks against the Rank Decoding problem

Table presents the best complexity of our attacks (see sections 4| and [p) against
RD and gives the binary logarithm of the complexities (column “This paper”) for
all the parameters in the ROLLO and RQC submissions to the NIST competition
and Loidreau cryptosystem [30]; for the sake of clarity, we give the previous
best known complexity from [I1] (last column). The third column gives the
original rate for being overdeterminate. The column ‘a’ indicates the number
of specialized columns in the hybrid approach (Section , when the system
is not overdetermined. Column ‘p’ indicates the number of punctured columns
in the “super”-overdetermined cases (Section . Column ‘b’ indicates that we
use Support Minors Modeling in conjunction with MaxMin (Section [5.7]).

Let us give more detail on the way to compute the best complexity for
ROLLO-I-256 in Table[T] Recall that its parameters are (m, n, k,r) = (113,134, 67,7).
The attack from Section [4] only works with the hybrid approach, thus requiring
a = 8 and resulting in a complexity of 158 bits (using and w = 2.81). On the
other hand, the attack from Section[5.7]needs b = 2 which results in a complexity
of 154 (this time using Wiedemann’s algorithm). However, if we specialize a = 3
columns in C, we get b = 1 and the resulting complexity using Wiedemann’s
algorithm is 151.

25



Table 1. Complexity of the attack against Rank Decoding for different cryptosystems.
The values in the column This paper are the smallest ones between Strassen’s and
Wiedemann’s algorithm, the “*” indicates that it is Wiedemann.

n—k—1
(m,n, k,r) % a| p |b|This paper|[1I]
Loidreau ([300) | (128,120,80,4) | 1.28 [0]43[0] 65 03
ROLLO-I-128 (79,94, 47,5) 1.97 (0|9 |0 71 117
ROLLO-I-192 | (89,106, 53, 6) 1.06 [0| 0|0 87 144
ROLLO-1-256 | (113,134,67,7) 0.67 3|01 151% 197
ROLLO-II-128 | (83,298,149, 5) 2.42 0]40|0 93 134
ROLLO-II-192 |(107, 302, 151, 6) 1.53 0]18|0 111 164
ROLLO-II-256 ((127,314,157,7)| 0.89 0|6 |1 159%* 217
ROLLO-III-128| (101,94,47,5) 2.52 0]12/|0 70 119
ROLLO-III-192| (107,118, 59, 6) 1.31 0{410 88 148
ROLLO-III-256| (131,134,67,7) 0.78 (0|01 131%* 200
RQC-I (97,134,67,5) 2.60 |0(18|0 77 123
RQC-II (107,202,101, 6) 1.46 0]10|0 101 156
RQCIII  |(137,262,131,7)] 093 [3|0|0] 144 |214

6.2 Attacks against the MinRank problem

Tables |2| and [3| show the complexity of our attack against generic MinRank
problem for GeMSS and Rainbow, two cryptosystems at the second round of
the aforementioned NIST competition. The two tables also compare this new
attack to the previous MinRank attacks, which use minors modeling in the case
of GeMSS [14] and a linear algebra search [18] in the case of Rainbow. In table[3]
the column “Best/Type” shows the complexity of the current best attack against
Rainbow, which is not a MinRank attack.

6.3 Comparison between our approach and the use of generic
Grobner basis algorithms

Since our approach is an algebraic attack, it relies on solving a polynomial sys-
tem, thus it does look like a Grobner basis computation. In fact, we do compute
a Grobner basis of the system, as we compute the unique solution of the system,
which represents its Grobner basis.

Nevertheless, our algorithm is not a generic Grobner basis algorithm as it
only works for the special type of system studied in this paper: the RD and
MinRank systems. As it is specifically designed for this purpose and for the
reasons detailed below, it is more efficient than a generic algorithm.

There are three main reasons why our approach is more efficient than a
generic Grobner basis algorithm:

e We compute formally (that is to say at no extra cost except the size of
the equations) new equations of degree r (the MaxMinors ones) that are
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Table 2. Complexity comparison between the new and the previous MinRank attacks
against GeMSS parameters. Recall that the previous attack used minors (see [I4]). The
new complexity is computed by finding the number of columns n’ and the degree b that
minimizes the complexity, as described in Section

Complexity
(D,n, A, v) n/m| K | r || n' |b||New|Previous

GeMSS128(513,174,12,12) 174 1162(34|| 61 |2||154| 522
GeMSS192(513,256,22,20) | 265 [243|52| 94 |2{[223| 537
GeMSS256(513,354,30,33) | 354 |324(73||126|3||299| 1254
RedGeMSS128(17,177,15,15) | 177 |162|35|| 62 |2||156| 538
RedGeMSS192(17, 266, 23, 25) | 266 [243|53|| 95 |2{/224| 870
RedGeMSS256(17, 358,34, 35) | 358 |324|74(/127(3|[301| 1273
BlueGeMSS128(129,175,13,14)| 175 [162|35|| 63 |2||158| 537
BlueGeMSS192(129, 265, 22, 23) | 265 [243|53| 95 |2{|224| 870
BlueGeMSS256(129, 358, 34, 32)| 358 [324|74|(127|3|/301| 1273

Table 3. Comparison between the new MinRank attack, the previous best MinRank
attack using linear algebra search, and the best known attack for Rainbow. Here the
acronyms RBS and DA stand from Rainbow Band Separation and Direct Algebraic,
respectively [I8]. The new complexity is computed by finding the number of columns
n’ and the degree b that minimizes the complexity, as described in Section

Complexity
New |Previous|Best / Type
155| 161 | 145/RBS
208 585 215/DA
272 778 | 275/DA

Rainbow(GF(q),v1,01,02)| n |K| v || n/
Ta(GF(16),32,32,32) |96 |33| 64 || 82
IIIc(GF(256), 68, 36,36) |140(37|104|/125
Ve(GF(256), 92,48, 48) |188(49|140]/169

| Ot | o
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already in the ideal, but not in the vector space
Fr:={uf : w monomial of degree r — 2, f in the set of initial polynomials).

In fact, a careful analysis of a Grébner basis computation with a normal
strategy shows that those equations are in F,;1, and that the first degree
fall for those systems is r + 1. Here, we apply linear algebra directly on a
small number of polynomials of degree r (see the two following items for
more details), whereas a generic Grobner basis algorithm would compute a
lot of polynomials of degree r+1 and then reduce them in order to get those
polynomials of degree r.

e A classical Grobner basis algorithm using linear algebra and a normal strat-
egy will construct matrices like the Macaulay ones, where the rows corre-
spond to polynomials in the ideal and the columns to monomials of a certain
degree. Here, we introduce variables ¢ that represent maximal minors of C,
and thus represent not one monomial of degree r, but ! monomials of degree
r. As we compute the Grébner basis by using only polynomials that can be
expressed in terms of those variables (see the last item below), this reduces
the number of columns of our matrices by a factor around r! compared to
generic Macaulay-like matrices.

e The solution can be found by applying linear algebra only to some specific
equations, namely the MaxMinors ones in the overdetermined case, and in
the underdetermined case, equations that have degree 1 in the cp variables,
and degree b — 1 in the z; variables (see Section . This enables us to
deal with polynomials involving only the cr variables and the z; variables,
whereas a generic Grobner basis algorithm would consider all monomials up
to degree r + b in the x; and the ¢; ; variables. This drastically reduces the
number of rows and columns in our matrices.

For all of those reasons, in the overdetermined case, only an elimination on
our selected MaxMinors equations (with a “compacted” matrix with respect to
the columns) is sufficient to get the solution; so we essentially avoid going up to
the degree r + 1 to produce those equations, we select a small number of rows,
and gain a factor 7! on the number of columns.

In the underdetermined case, we find linear equations by linearization on
some well-chosen subspaces of the vector space F,.1p. We have theoretical reasons
to believe that our choice of subspace should lead to the computation of the
solution (as usual, this is a “genericity” hypothesis), and it is confirmed by all
our experiments.

7 Examples of new parameters for ROLLO-I and RQC

In light of the attacks presented in this article, it is possible to give a few examples
of new parameters for the rank-based cryptosystems, submitted to the NIST
competition, ROLLO and RQC. With these new parameters, ROLLO and RQC
would be resistant to our attacks, while still remaining attractive, for example
with a loss of only about 50 % in terms of key size for ROLLO-I.
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For cryptographic purpose, parameters have to belong to an area which does
not correspond to the overdetermined case and such that the hybrid approach
would make the attack worse than in the underdetermined case.

Alongside the algebraic attacks in this paper, the best combinatorial attack
against RD is in [4]; as a reminder, for attacking a [n, k] code over F,m with
target rank r, its complexity is

o ((nm)zqr[%] 7’”) .

Remark 3. In this section, the notation is chosen to match the one in ROLLO
and RQC submissions’ specifications ([7] and [I]). One should be careful that
here, n is the block-length and not the length of the code which can be either
2n or 3n.

In what follows, we consider w = 2.81 and we use the following notation, for
ROLLO (Table [4):

— over/hybrid is the cost of the hybrid attack; the value of a is the smallest
to reach the overdetermined case, a = 0 means that parameters are already
in the overdetermined case,

— under is the case of underdetermined attack.

— comb is the the cost of the best combinatorial attack mentioned above,

— DFR is the binary logarithm of the Decoding Failure Rate,

and for RQC (Table [f)):

e hyb2n(a): hybrid attack for length 2n, the value of a is the smallest to reach
the overdetermined case, a = 0 means that parameters are already in the
overdetermined case,

e hyb3n(a): non-homogeneous hybrid attack for length 3n, a is the same as
above. This attack corresponds to an adaptation of our attack to a non-
homogeneous error of the RQC scheme, more details are given in [T,

e und2n: underdetermined attack for length 2n,

e comb3n: combinatorial attack for length 3n.

For more details about those parameters and the aforementioned attacks,
reader may refer to the submissions specifications of ROLLO (see [7]) and RQC
(see [).

Instance q| n | m |r|d|pk size (B)|DFR|over/hybrid| a |p|under|b|comb
new2rOLLO-I-128|2| 83 | 73 |7|8 757 -27 233 18|0| 180 (3| 213
new2ROLLO-1-192|2| 97 | 89 |88 1057 -33 258%* 17|0| 197* |3| 283*
new2ROLLO-1-256 2| 113/103(9|9 1454 -33 408%* 30|0| 283* |6] 376*
Table 4. New parameters and attacks complexities for ROLLO-I.
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Instance q| n | m |k|w|w,|d|pk (B)|hyb2n(a)|hyb3n(a)lund2n|b{comb3n

newRQC-I |2(113|127|3|7| 7 |6 1793 | 160(6) 211(0) 158 |1| 205

newRQC-IT (2(149(151|5[8| 8 |8| 2812 | 331(24) | 262(0) 224 (3| 289

newRQC-I1T|2(179(181|3[9| 9 |7| 4049 | 553(44) | 321(5) | 324 |6| 401
Table 5. New parameters and attacks complexities for RQC.

8 Conclusion

In this paper we improve on the results by [I1] on the Rank Decoding problem
by providing a better analysis which permits to avoid the use of generic Grébner
basis algorithms and permits to completely break rank-based cryptosystems pa-
rameters proposed to the NIST Standardization Process, when analysis in [11]
only attacked slightly these parameters (mostly corresponding to the overdeter-
minate case defined in [I1]).

We generalize this approach to the case of the MinRank problem for which
we obtain the best known complexity with algebraic attacks. We also proposed
a new approach for the underdeterminate case as described in [II], for some
parameters this attack supersedes the results of [I1], in particular for attacking
ROLLO-I-256 parameters.

Overall the results proposed in this paper give a new and deeper under-
standing of the complexity of difficult problems based on the rank metric. These
problems have a strong interest since many systems still in the second round of
the NIST standardization process, like ROLLO, RQC, GeMSS or Rainbow can
be attacked through these problems.
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