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NTRU Prime - “Design Philosophy”

» https://ntruprime.cr.yp.to/ (version 2021.01.14)

The standard response to these failures is to discard the systems shown to be broken, while continuing to claim confidence in the
remaining systems. However, there is no reason to believe that the new attacks published in the last few years are the end of the
story. A better approach is to proactively modify cryptographic designs to reduce the attack surface.

Concretely, this design strategy implies
Comment: Meta-comment:

e using large Galois groups instead of cyclotomics; Some of these Different ways to

e using "inert" moduli instead of "split" moduli; design choices define and analyze the

e eliminating decryption failures; can both help attack surface

H " H " : n H n and hurt

e using "rounding” instead of "noise”; security... Security reductions,

e using "ternary" distributions; and security proofs

¢ using "rings" instead of "modules”. Two options: : ,
Streamlined NTRU Prime Taxonomies of possible
NTRU LPRime attacks and counter-

measures



https://ntruprime.cr.yp.to/

NTRU Prime - Security

» Big picture: Choice of the ring: Z [x] / (xP - x - 1)

» Contrast with cyclotomic rings, which have more known attacks (but also
easier to analyze)

» [CDW17] Cramer, Ducas and Wesolowski, “Short Stickelberger Class Relations and
application to Ideal-SVP,” https://eprint.iacr.org/2016/885

» [DPW19] Ducas, Plancon and Wesolowski, “On the Shortness of Vectors to be found
by the Ideal-SVP Quantum Algorithm,” https://eprint.iacr.org/2019/234

» Claim: Quantum algorithm has approx. ratio exp(O-(/n)), which is good
asymptotically, but doesn’t beat LLL/BKZ algorithms on instances that we care

about

» S-unit attacks? We’ll discuss this later...



https://eprint.iacr.org/2016/885
https://eprint.iacr.org/2019/234

(version 2021.10.31)

Comments:

Some of these risks are
larger than others

Some of these risks can
be mitigated easily,
some cannot

This table does not
include all possible
risks to PQC

submission NTRU NTRU Prime SABER | Kyber | Frodo
KEM family ntruhrss| ntruhps| sntrup|ntrulpr| saber| kyber| frodo
KEM 70140961229 1277 1277 firel 1024 640
Known attack avénues notlruled outlby theoréms | |

lattices risk risk risk risk risk risk risk
derandomization risk risk risk risk
decryption failures 165 174 138
structured lattices risk risk risk risk risk risk
cyclotomics risk risk risk risk
reducibility risk risk risk risk
quotients risk risk risk

extra samples risk risk risk risk
non-QROM FO risk risk risk risk risk risk risk
non-QROM 2 risk risk risk risk
Known patent threats

patent 9094189 risk risk risk

patent 9246675 risk risk risk
Systemic risks

PKE instability 2019.04| 2019.04| 2016.05[ 2017.12[ 2019.04|2020.10|2019.04
instability 2019.04| 2019.04| 2019.04( 2019.04| 2019.04|2020.10|2019.04



https://ntruprime.cr.yp.to/warnings.html

“The Case for NTRU Prime”

https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf

Originally claimed advantages in both security and performance

But, had to add larger/slower parameter sets in rounds 2 and 3

vV v v Vv

Recent arguments in favor of NTRU Prime put more emphasis on security

9 Advantages and limitations (2.B.6)

There are several proposals of lattice-based cryptosystems that appear to provide high se-
curity with keys and ciphertexts fitting into just a few kilobytes. This proposal is designed
to have the smallest attack surface, minimizing the number of avenues available to crypt-
analysts. Some recent attacks against lattice-based cryptosystems rely on homomorphisms
eliminated by this proposal.

At the same time this proposal provides unusually small sizes and excellent speed. One of
the reasons for this performance is that this proposal provides the flexibility to target any
desired lattice dimension rather precisely, without the “jumps” that appear in most propos-
als. Future advances in understanding the exact security level of lattice-based cryptography
will allow this proposal to be tuned accordingly.



https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf

NTRU Prime - Parameter Sets

» Estimates of security strength have changed quite a bit, see table

» Why? Mistakes, confusion about NIST security categories, recent research progress

» We should probably do a more detailed comparison of security/performance

with NTRU, Kyber, Saber...

Parameter set Round 1 Round 2 Round 3
sntrup653 Category 2 Category 1
sntrup761 Category 5 Category 3 Category 2
(sntrup4591761)

sntrup857 Category 4| Category 3 or 2*
sntrup953 Category 4 or 3*
sntrup1013 Category 4
sntrup1277 Category 5

* See “Bulletproofing
strategies #1 and #2,”
reverse-engineering

the NIST security
categories,

https://ntruprime.cr.

nttps://ntruprime.cr.yp.to/nist.html (version 2020.10.31)

yp.to/nist/ntruprime-

20201007.pdf



https://ntruprime.cr.yp.to/nist.html
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf

“The Case for NTRU Prime”

» https://ntruprime.cr.yp.to/latticerisks-20211031.pdf (version 2021.10.31)

Abstract. Lattice-based KEMs under consideration within the NIST
Post-Quantum Cryptography Standardization Project (NISTPQC) are

Comments: much more risky than commonly acknowledged. In applications where
performance constraints force the use of a lattice-based KEM, the least

The case for NTRU risky option available is NTRU Prime, specifically Streamlined NTRU

Prime is based on Prime (sntrup) at the largest size that fits those performance constraints.

security, not

performance 7.1. A simple example where NTRU Prime has the best performance.

_ . As in Section 6.7, let’s ask for the smallest ciphertext size provided by the KEMs
Most of the evidence is - : - - : s
specified in each lattice submission, subject to requiring Core-SVP to be at least

negative (i.e., against 2128 but now let’s look at all five submissions, not just NTRU and Kyber. NTRU
Kyber and Saber, rather

than for NTRU Prime)

Prime is the winner:

e NTRU Prime (sntrup653): 897 bytes.
If we standardize Kyber e NTRU (ntruhps2048677): 931 bytes. Small differences
or Saber, we should e Kyber (kyber768): 1088 bytes. (but can be important?)
L
L

address these SABER (saber): 1088 bytes.
criticisms in our report Frodo (frodo640): 9720 bytes.



https://ntruprime.cr.yp.to/latticerisks-20211031.pdf

“Fitting a public key into a single packet”

Question: How important is this?

Choice of performance requirement. Consider the problem of fitting a client’s public
kev into a single Internet packet. This allows a server to immediately set up a cryptographic
session. encapsulating a session key in its response packet, without having to buffer any data:;
such buffers are a traditional target for denial-of-service attacks|

IPv6 guarantees that a 1280-byte packet will be transmitted successfully (while measure-
ments such as [132] and [131] indicate that slightly larger packets often encounter failures).
so 1t 1s natural to set 1280 bytes as a packet-size limit. This does not mean that the key-size
limit should be as large as 1280 bytes. Part of the space in a packet is consumed by overhead.
and the amount of overhead depends on other protocol details. For example. a minimal IPv6
header consumes 40 bytes (as opposed to 20 bytes for IPv4); a UDP header consumes 8 bytes:
protocol designers often include 32 bytes for an ECC key; protocol designers often include
a connection identifier; etc. Leaving some room below 1280 bytes provides flexibility for the
protocol designer. https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf



https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf

NTRU Prime - Implementations

Current software

ntruprime-20206930.sage: Reference implementation in Sage (Python plus math libraries) for sntrup653, sntrup761 (and

sntrup4591761), sntrup857, sntrup953, sntrupl013, sntrupl277, ntrulpr653, ntrulpr761 (and ntrulpr4591761), ntrulpr8s7,
ntrulpr953, ntrulprlel3, and ntrulprl277.

Reference C software:

e See the crypto_kem/sntrup{653,761,857,953,1013,1277}/ref and
crypto_kem/ntrulpr{653,761,857,953,1013,1277}/ref directories in the SUPERCOP benchmarking toolkit.

Optimized software:

o See the crypto_kem/sntrup{653,761,857,953,1013,1277}/factored and
crypto_kem/ntrulpr{653,761,857,953,1013,1277}/factored directories in the SUPERCOP benchmarking_toolkit.

Hardware implementation:

¢ A constant-time hardware implementation in VHDL for sntrup653, sntrup761 and sntrup857 is available at
https://github.com/AdrianMarotzke/SNTRUP.

nttps://ntruprime.cr.yp.to/software.html (version 2021.06.03)



https://ntruprime.cr.yp.to/software.html

https://cr.yp.to/talks/2021.09.03/slides-djb-20210903-saferewrite-4x3.pdf

Software
verification

The good news: symbolic testing

Symbolic-testing tools check that
optimized software equals reference software.
“Equals”: gives the same outputs for all inputs.

Today’s tools are surprisingly easy to use and
quickly handle many post-quantum subroutines.

This talk: new saferewrite symbolic-testing tool.
Open source from https://pgsrc.cr.yp.to.

Under the hood, doing most of the work:
valgrind; its VEX library; Z3 theorem prover;
angr . io binary-analysis/symbolic-execution toolkit.

Daniel J. Bernstein, Fast verified post-quantum software



https://cr.yp.to/talks/2021.09.03/slides-djb-20210903-saferewrite-4x3.pdf

$

|

System |Core-SVP|ciphertext bytes|public-key bytes|enc cycles|dec cycles/keygen cycles
sntrup653 129 897 994 44155 55778 716209
ntrulpr653 130 1025 897 66749 79327 40775
sntrup761 153 1039 1158 46914 56241 809657
ntrulpr761 155 1167 1039 69103 82071 42515
sntrup857 175 1184 1322 58631 76861 1211563
ntrulpr857 176 1312 1184 88340 107987 54033
sntrup953 196 1349 1505 62704 80654 1523540
ntrulprgs3 197 1477 1349 95007 115340 58354
sntruple13 209 1455 1623 63916 81708 1753602
ntrulprlel3 210 1583 1455 94285 112920 58345
sntrupl277 270 1847 2067 80920 100079 2613358
ntrulprl277 271 1975 1847 121397 144582 77092

(version 2021.06.04)



https://ntruprime.cr.yp.to/speed.html

NTRU Prime - Performance

» Strategies to improve performance: FPGAs, batch key generation

[https://eprint.iacr.org/2021/1444] 31pp. Bo-Yuan Peng, Adrian Marotzke, Ming-Han Tsai, Bo-Yin Yang, Ho-Lin Chen.
"Streamlined NTRU Prime on FPGA". Date: 2021.10.28. Reports a high-speed implementation and a low-area implementration of
sntrup761 for the Xilinx Zynq Ultrascale+ and Xilinx Artix-7 FPGA. Achieves the to-date fastest speeds for Streamlined NTRU

Prime, with speeds of 5007, 10989 and 64026 cycles for encapsulation, decapsulation, and key generation respectively, while
running at 285 MHz on a Xilinx Zynq Ultrascale+. The entire design uses 40060 LUT, 26384 flip-flops, 36.5 Bram and 31 DSP.

\ e -

[https://eprint.iacr.org/2021/826] 18pp. Daniel J. Bernstein, Billy Bob Brumley, Ming-Shing Chen, Nicola Tuveri.
"OpenSSLNTRU: Faster post-quantum TLS key exchange". USENIX Security 2022, to appear. Date: 2021.10.06. Reports much

faster key generation for sntrup (156317 Haswell cycles for sntrup761 key generation, 46914 cycles for encapsulation, and 56214

cycles for decapsulation), and integration into TLS 1.3.

nttps://ntruprime.cr.yp.to/papers.html (version 2021.10.28)



https://ntruprime.cr.yp.to/papers.html

NTRU Prime - “Official Comments”

» NTRU Prime team: Complaint that NIST has not specified a metric for
estimating costs of attacks, leading to incorrect estimates of security strength
for Kyber, NTRU Prime, etc.

» NTRU Prime team: Complaint that NIST evaluations are biased against NTRU
Prime

» D. Bernstein: Announcement of “saferewrite” tool for software verification
» D. Bernstein: Complaint of misconduct by D. Apon (17 pages)

» C. Peikert: Complaint that NTRU Prime FAQ makes misleading statements
about patents

» D. Bernstein: Complaint that NIST has been discouraging public discussion of
patent issues

» D. Moody: NIST position regarding bad behavior on the PQC Forum
» Followed by more bad behavior on the PQC Forum
» NTRU Prime team: Announcement on “Risks of lattice KEMs” (99 pages)




Let’s take a short break...

This Photo by Unknown Author is licensed under CC BY-SA



https://thirdestatesundayreview.blogspot.com/2017/03/who-doesnt-love-puppies.html
https://creativecommons.org/licenses/by-sa/3.0/

S-unit Attacks

>

>

>

>

Folklore? (see, e.g., emails by Dan Bernstein, circa 2016)

» Given an ideal |, find an element g of |, then find an S-unit u such that gu is short

Rigorous analysis by Pellet-Mary et al ([PHS19]: https://eprint.iacr.org/2019/215)
» Using the log-S-unit lattice; some details seem awkward or sub-optimal
Improved by Bernard and Roux-Langlois ([BR20]: https://eprint.iacr.org/2020/1081)
» Nicer variant of log-S-unit lattice; numerics suggest it finds shorter vectors; easier to read
» Further improvements by Bernard et al ([BLNR21]: https://eprint.iacr.org/2021/1384)

Dan Bernstein (2021): Conjecture that S-unit attacks can do much better
(https://cr.yp.to/talks/2021.08.20/slides-djb-20210820-sunitattacks-4x3.pdf)

» Limited evidence for this conjecture; hard to see asymptotic scaling from numerics

» Preprint ([BL21]: https://eprint.iacr.org/2021/1428) claims that the analysis by [PH519],
applying the Gaussian heuristic to the log-unit lattice, is not accurate

» Also thinks the [BR20] algorithm is better than [PHS519]; thinks they should have cited hi



https://eprint.iacr.org/2019/215
https://eprint.iacr.org/2020/1081
https://eprint.iacr.org/2021/1384
https://cr.yp.to/talks/2021.08.20/slides-djb-20210820-sunitattacks-4x3.pdf
https://eprint.iacr.org/2021/1428

[PHS19] version of the log-S-unit lattice

Given a set S = {p1,....,pr} of prime integral ideals, the S-units are the elements
o € K such that there exist eq,...,e, € Z with [], p;* = ().

Idea: ais a
unit modulo
the p;

\

Algorithm 3.1 Computes a basis By, as described above

Input: A number field K and an integer » = poly(log |A|) such that log hx < r.
Output: The basis By described in Section 3.1.
1: Compute the set B’ of all prime ideals of algebraic norm < 12 log? Al
2: Compute all the relations between the elements of B’ and the log-unit lattice A.
3: Use the relations to extract a set B” C B’ generating the class group with
IB"| <loghk.
4: Compute the set P of all prime ideals of norms smaller than some poly(log|A|)
(choose the bound so that |[B| > r).
5: Create a set B by adding to B” ideals taken uniformly in *B, until the cardinality
of B reaches r.
6: Compute a basis of ker(fy) and generators g; of the fractional principal ideals

Note: this is P,
'not B

corresponding to the relations computed.
7: Create the matrix Br from these r relations, the corresponding ¢; and the log-unit
lattice A computed at Step 2.




[PHS19] version of R
the log-S-unit lattice
BL =
0 vy Uy .. Ur
\
o the matrix By = (fune(b1),.... fane(br1r,—1)) is a basis of fgngp(A),
where A is the log-unit lattice and fgnp : HNE Cc R"® — R™+72~1 ig an

isometry;*

e the column vectors Egi are of the form fynp(my(Logg;)) for g € K a
generator of the fractional principal ideal associated with the relation wv,,

i.e., we have [T, p;”" = (gi).




[PHS19] and [BR20]
versions of the
log-5-unit lattice By =

def
A rp = |Logsm

(=, () A (p5))

1<i,j<k

_Logoo Nk




[BR20] and [BL21] versions of the log map

and let O np denote the S-unit group of K with resiject to FB. Formally, we
have O pp = {a € K : 3eq,... e € L. () = Hpjj} . Similarly, it is possible
to define a S-logarithmic embedding [Nar04, §3, p.98] from K to Rri+r2+k:

Log., pp o = ([KU : Qu] +ln\cx|1,) = (Logm a, { —vp (&)-IIIN(p)}peFB).

veS__UFB

e The “infinite places” are labeled 1,3.5,...,n—1, except that for n = 1 there
1s one infinite place labeled 1. The entry at place j in Log a is defined as
2log |oj(a)|, except that the 2 is omitted for n = 1. The set of all infinite
places is denoted oo, and is required to be a subset of S.

e For each nonzero prime ideal P of R, there is a “finite place” labeled P. The
entry at place P in Log « is defined as —(ordp o) log #(R/P), where ordp «
is the exponent of P in the factorization of o as a product of powers of prime Note: #(R/P) =

ideals. There are many choices of S here. This paper focuses on the following [ |infinity? Should

form of S: choose a parameter y, and take P € S if and only if #(R/P) < y. | |be the algebraic
norm N(P)?

The group Ug of S-units of K is, by definition, the set of elements u € K* such
that the vector Log u is supported on S, i.e., is 0 at every place outside S. The
S-unit lattice is the lattice Log Ug, which has rank #S5 — 1.




Numerical results

from [BR20]

algorithm for the Cvp solver role. Exper}méntal evidence in §5 suggest that
these algorithms perform remarkably well, because the twisted description of
the log-S-unit lattice seems much more orthogonal than expected. Proving this
property would remove, in a quantum setting, the only part that is not polyno-

mial in In|Ag].

Tw-PHS {E?EFEQE]
12 _|
1x10 m Tw-PHS
Opt-PHS (average) /
y % Opt-PHS ' -
1x10+Y H PHS log (average)
PHS log :
G 1x10% i
E / )
E /' =
= 1x106 /{ =
_~ — .
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= 10000 - pd 4;/ :
100 4 - / : i l l
: B *
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| I | |
20 25 33 > >
Field degree

Fig. 1.1 — Approximation factors reached by Tw-PHS,
cyclptomic fields of conductors 23, 29, 31, 37, 41, 43, 47 and 53 (in log scale).

Questions:

What is the
asymptotic scaling
of this attack?

Does this affect
our concrete
security estimates?

For comparison,
LLL has approx.
ratio ~ 1.022"

LLL wins, until n

Opt-PHS and PHS fd

gets large




Numerical results
from [BR20]

Tw-PHS (average)

1x10'? 91 . fy.pHS
Opt-PHS (average)
0 *  Opt-PHS
1x10-% PHS log {average)
. +  PHSIog ¥
& 1x10° - ‘ ///%
e -
: e |
uestion:
E lxlﬂﬁ | V Q
=H | F
2 / . Any difference b/w
— 10000 - i
£ //,I cyclotomic and
! NTRU Prime fields?

100 ?/iﬁi/ . +
1 i
T T T
20 25 30 35 40
Field degree

Fig. 5.4 — Approximation factors reached by Tw-PHS, Opt-PHS and PHS for
NTRU Prime fields of degrees 23, 29, 31 and 37 (in log scale).




Numerical results from [BLNR21]
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Root Hermite factor
delta = eta™(1/n)
~ (approx. ratio)”*(1/n)

Q. algorithm has
delta = exp(O~(1//n))
2>1+0(1//n)

Graph revised in Aug.
2021, fixing mistake
found by D. Bernstein

Where does Twisted-PHS
lie on this graph?
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Fig. 5: Quality of Quantum Ideal-SVP vs. LLL and BKZ.
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What is the asymptotic scaling of these
S-unit attacks?

» [PHS19] wanted to show an upper-bound (i.e., given subexponential computing
resources, S-unit attacks succeed)

» Made some heuristic assumptions, including Gaussian heuristic

» Subsequent arguments: how tight is this upper-bound? (i.e., could S-unit
attacks perform better than what [PHS519] showed?)

» Folklore: for random lattices, the Gaussian heuristic is pretty close to reality
» Caveat: log-unit lattice has some special features that don’t look random

» Caveat: Gaussian heuristic can be used to predict many properties of a lattice,
and some of these predictions are more robust than others




Assumptions used in [PH519]

Heuristic 1. There exists a constant ¢ > 0 such that the ball of radius c-)\?} (L)
(in /3-norm) contains at least 2™ points of L. Moreover, once renormalized, these
points ‘behave’ as uniformly and independently distributed points on the unit
sphere.

Heuristic 4. With good probability over the choice of B, the /-norm covering
radius of L satisfies (°*)(L) = O(1) (and hence ;) (L) = O(/v)).

Heuristic 5. We assume that in our algorithm, the target vector ¢ given as

input to Laarhoven’s algorithm behaves like a random vector sampled uniformly
in Span(L)/L.

Heuristic 6. With non-negligible probability over the input target vector ¢, dis-
tributed uniformly in Span(L)/L, the vector v output by Laarhoven’s algorithm

satisfies ||t — v||se < O(||t — v]|2/\/7)-



[BL21]: Examples of how the Gaussian
heuristic fails on log-S-unit lattices

d| actual|spherical “random” Question:
1/1.000000|1.000000|1.000000 = 0.000000 Do any of the examples
2|1.000000|0.797885|0.704990 = 0.230396 in [BL21] disprove any
droomolovrso s 0 1o f the asumptons
: . : . . 2
16/1.000000{1.143101|1.099844 4 0.076381 made in [PH519]?

32(1.000000|1.503494|1.474600 % 0.059322
64/1.000000(2.039712
128|1.0000002.817717
256(1.000000]3.933095
512|1.000000|5.522266
1024|1.000000|7.773923

Table 4.2. Numerical examples of how inaccurate spherical models are for Z%. All
entries after the first column are rounded to 6 digits after the decimal point. Second
column, “actual”: minimum length Al(Zd) of nonzero vectors in Z%. Third column,
“spherical”: minimum length of nonzero vectors in a spherical model of Z%. Fourth
column, “random”, only for d < 32: average and standard deviation of A\{(L) for 128
“random” dimension-d determinant-1 lattices L; see text for details.




[BL21]: Examples of how the Gaussian

heuristic fails on log-S-unit lattices
6 Spherical model of S-units for QQ

This section assumes n = 1, takes any number of finite places in S, and quantifies
the inaccuracy of spherical-model predictions of (1) the shortness of vectors in
the S-unit lattice and (2) the effectiveness of reduction modulo those vectors.

The ring R = Z[x]/(x + 1) and field K = Q[z]/(x + 1) are isomorphic to Z
and @Q respectively; this section automatically applies these isomorphisms. This
section assumes that S has the form co U {pZ : prime p < y}, where y > 2.

For example, if y is chosen as 7, then S = oo U{2Z. 37, 57, 7TZ}, and the set of
S-units is £2%3%2527% More and more primes appear in S as y increases. S-units

in Z are also known as “y-smooth integers”: e.g., 7T-smooth integers are elements
of £2N3N5N7N "where N = {0,1,2,...}.

Question:

Do any of the examples
in [BL21] disprove any
of the assumptions
made in [PHS19]?




[BL21]: Examples of how the Gaussian
heuristic fails on log-S-unit lattices

7 An S-reversal phenomenon for every field

Fix n € {1,2,4,8,16,...}. Define R = Z[z|/(z"™ + 1) and K = Q[z]/(z™ + 1).
Take S = co U{P : #(R/P) < y}. This section shows that a spherical model
produces two absurd conclusions regarding S-unit attacks:

e 'The shortest nonzero S-unit becomes longer and longer as y — oo.
e The success probability of reduction modulo short S-units converges to 0 as

Y — 0.

7.1. Length of the shortest nonzero vectors. Consider a spherical model
M of the S-unit lattice L. By Landau’s prime-ideal theorem [58, §5], the number
of prime ideals P with #(R/P) < yis (1 +o(1))y/logy as y — oo, so the
dimension d of L is (1 4 o(1))y/logy. The geometric average of log #(R/P) is
(14 0(1))logy. so (det L)< € (1 + o(1))logy.

The shortest nonzero vectors in M have length (1+o0(1))(d/2me)*/?(det L)1/4
by Theorem 3.9, i.e., (1/2we + 0(1))'/2(ylogy)'/2, generalizing what Section 6
said for K = Q. In particular, this length converges to oo as y — oc.

Question:

Do any of the examples
in [BL21] disprove any
of the assumptions
made in [PHS19]?




[BL21]: Examples of how the Gaussian heuristic fails on log-S-unit lattices

8 Spherical model of units for power-of-2 cyclotomics

This section takes the smallest possible y: namely, y = 1. Then S = oo,
and the S-unit lattice is just the unit lattice. This section computes—assuming

m|  n|Regf /(n/4)"/*|spherical model|actual length ratio Question:

8 4 0.881374 2.492901 2.492901(1.000000 Do any of the examples
16| 8 0.610449 2.652102 3.766835(0.704066 in [BL21] disprove any
32| 16 0.480772 4.081293 5.673348(0.719380 of the assumptions
64| 32 0.384226 6.967780 8.189221(0.850848 made in [PHS19]?

128 64 0.393293 12.735518|  11.719983|1.086650
256| 128 0.286233 23.862591|  16.663464(1.432031
512| 256 0.200698 45.953088|  23.631207|1.944593
1024| 512 0.202244 90.089629|  33.464774(2.692073
2048|1024 0.192272 178.014429|  47.358628(3.758860
4096|2048 0.199056 353.577209|  66.997907|5.277437

Table 8.3. Numerical examples of how inaccurate spherical models are for unit lattices
for power-of-2 cyclotomic fields, assuming h™ = 1. All entries after the first two columns
are rounded to 6 digits after the decimal point. First column: conductor m of field
K = Q(¢m)- Second column: n = m/2, the degree of K. Third column: the regulator
Reg} of K divided by (n/ 4)”/ 4. Fourth column, “spherical model”: minimum nonzero
length in spherical model of the unit lattice of K. Fifth column, “actual length”: length
of a nonzero vector in the unit lattice of K, namely Log(1 + (m + 1/(m ). Sixth column,
“ratio”: fourth column divided by fifth column. Compare Table 4.2.




S-unit Attacks

» Take-away message: we are starting to understand these attacks?
» Bernard and Roux-Langlois ([BR20]: https://eprint.iacr.org/2020/1081)
» Bernard et al ([BLNR21]: https://eprint.iacr.org/2021/1384)
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