SIKE

Yi-Kai Liu
NIST

November 2021

Not for distribution

High-level description: SIDH
(Supersingular Isogeny Diffie-Hellman

= i
SN

» Isogeny graph
» Vertices: Elliptic curves

» Edges: Isogenies
(maps from one curve to another) > /
N

8 R
= “) ,‘ﬁ s
> ~ ‘? -

) > &W‘ /j;_i-g 3 D\
i

» Claim: Given two curves E and E’, finding an isogeny between them is hard

» Like computing discrete logs, but in a graph rather than a group

De Feo, Jao, Plut (2011) https://eprint.iacr.org/2011/506

High-level description: SIDH
(Supersingular Isogeny Diffie-Hellman)

» Isogenies

Let £y and Eg be elliptic curves defined over a finite field F,. An isogeny ¢ : £y — L9 defined over [,
is a non-constant rational map defined over F, which is also a group homomorphism from E(F,) to Ea(F,)

» Supersingular vs ordinary \ -

An endomorphism of an elliptic curve E defined over F, is an isogeny £ — E defined over F = for some m.
The set of endomorphisms of £ together with the zero map forms a ring under the operations of pointwise
addition and composition; this ring is called the endomorphism ring of E and denoted End(FE). The ring
End(#) is isomorphic either to an order in a quaternion algebra or to an order in an imaginary quadratic
field [37, V.3.1]; in the first case we say [/ is supersingular and in the second case we say F is ordinary.

» Let Abe aring, and a finite-dimensional algebra over Q. Let O be a sub-ring of A.

» O is an order iff O is a Z-lattice in A, and the span of O (over Q) is A

https://eprint.iacr.org/2011/506

High-level description: SIDH
(Supersingular Isogeny Diffie-Hellman)

» Isogeny classes

Two elliptic curves £y and E9 defined over I, are said to be isogenous over I, if there exists an isogeny
¢: By — Lo defined over F,. A theorem of Tate states that two curves £y and Ego are isogenous over [, if
and only if #FE(F,) = #E(F,) [45, §3]. Since every isogeny has a dual isogeny [37, I11.6.1], the property
of being isogenous over F, is an equivalence relation on the finite set of Fq-isomorphism classes of elliptic
curves defined over F,. Accordingly, we define an isogeny class to be an equivalence class of elliptic curves,
taken up to Fq—isomorphism, under this equivalence relation.

» Isogeny f and dual isogeny f’ satisfy f o f* = [n],
where [n] is the isogeny that maps e to ne (multiplication by n)

» Note: isogenies and isomorphisms are different things.
Roughly speaking, an isomorphism is an isogeny of degree 1.

High-level description: SIDH
(Supersingular Isogeny Diffie-Hellman)

» Isogeny graphs

2.2. Isogeny graphs. An isogeny graph|is a graph whose nodes consist of all elliptic curves in Fy belonging
to a fixed isogeny class, up to Fg-isomorphism (so that two elliptic curves which are isomorphic over F,

represent the same node in the graph). In practice, the nodes are represented using j-invariants, which are
- \

Every supersingular elliptic curve in characteristic p is defined over either F,, or Fj2 [37], so it suffices to fix
Fy = F,2 as the field of definition for this discussion. Thus, in contrast to ordinary curves, there are a finite
number of isomorphism classes of supersingular curves in any given isogeny class; this number is in fact g+ 1,
where ¢ is the genus of the modular curve Xo(p), which is roughly p/12. It turns out that all supersingular
curves defined over [Fj2 belong to the same isogeny class [27]. For a fixed prime value of ¢ # p, we define
the vertices of the supersingular isogeny graph G to consist of these g isomorphism classes of curves, with
edges given by isomorphism classes of degree-f isogenies, defined as follows: two isogenies ¢, 0o: E; — B

» Claim: Given two curves E and E’, finding an isogeny between them is hard
» Like computing discrete logs, but in a graph rather than a group

High-level description: SIDH
(Supersingular Isogeny Diffie-Hellman)

» Claim: Given two curves E and E’, finding an isogeny between them is hard

» Like computing discrete logs, but in a graph rather than a group

» However, the graph has algebraic structure, which we need to use
» How to compute an isogeny?
» Make Alice and Bob’s operations “commute,” to do key exchange

» Reveal some extra information (torsion points)

» Cryptanalysis: torsion-point attacks

» Quantum cryptanalysis? (ordinary vs supersingular curves)

High-level description: SIDH
(Supersingular Isogeny Diffie-Hellman)

» Specifying and computing isogenies, using their kernels

multiplicities) of degree ¢ originating from any given such supersingular curve. Given an elliptic curve E
and a finite subgroup ® of E, there is up to isomorphism a unique isogeny £ — E’ having kernel & [37,
I11.4.12]. Hence we can identify an isogeny by specifying its kernel, and conversely given a kernel subgroup the
corresponding isogeny can be computed using Vélu’s formulas [48]. Typically, this correspondence is of little
use, since the kernel, or any representation thereof, is usually as unwieldy as the isogeny itself. However,
in the special case of kernels generated by I 2-rational points of smooth order, specifying a generator of
the kernel allows for compact representation and efficient computation of the corresponding isogeny, as we

\
l » “Points of smooth order” => [-torsion group, where | is smooth and composite _

The ¢-torsion group of E, denoted E/|{], is the set of all points P € E(F,) such that /P is the identity.
For ¢ such that pt ¢, we have E[| 2 Z/lZ & L/ VL.

High-level description: SIDH
(Supersingular Isogeny Diffie-Hellman)

» Making Alice and Bob’s operations “commute” O E/(/
» Let R be in the torsion group E[L] £
» Let S be in the torsion group E[L,] (0

E/(R —r- E/

» Knowing ¥ and E/<S>, want to compute E/<S,R>
» Need a hint: the action of ¢ on E[l,]. This lets us compute ¢’

» Knowing ¢ and E/<R>, want to compute E/<S,R>
» Need a hint: the action of ¥ on E[L,]. This lets us compute ¢’

» Note: For security, need gcd(l,l;) = 1

High-level description: SIDH
(Supersingular Isogeny Diffie-Hellman)

(Pa,Qa) = Eo[l{] (Pp,Qp) = FEo[lF]
A B
Input: A, B.sID Input: B
ma,na €r Z/EZAZ mp.np €r Z/geBBZ
¢a = Eo/([ma]Pa + [na]Qa) ¢p = Lo/({[mp]Pp + [nB]QB)
A sID
‘i’A(PB):
?A(QRB).
E4
—A
B,sID
qi)B(PA)a
oB(QAa),
Eg
<_._._._._._
EAB = EBA =
EB/(Imalés(Pa)+[nalés(Qa)) EA/(Imgléa(Ps)+nsléa(@p))

Output: j(Eap),slD Output: j(Epa),sID

Jao et al (2020) https://sike.org/files/SIDH-spec.pdf

Proposed standard: SIKE
(Supersingular Isogeny Key Encapsulation)

» Implementation details:
» Montgomery curves

» Torsion groups E[2¢] and E[3¢’]

» Clever algorithms for elliptic curves (https://eprint.iacr.org/2016/413)

» Public key compression: 41% shorter, somewhat slower, not compatible with
uncompressed scheme (https://eprint.iacr.org/2019/499)

» Public key encryption, w/ CPA security

» Key encapsulation, w/ CCA security (decaps() does re-encryption)

https://eprint.iacr.org/2016/413
https://eprint.iacr.org/2019/499
https://sike.org/files/SIDH-spec.pdf

I. A generic reference implementation written exclusively in portable C with simple algorithms to
compute isogeny and field operations, using GMP for multi-precision arithmetic,

2. An optimized implementation written exclusively in portable C that includes efficient algorithms to
compute isogeny and field operations,

3. An additional, optimized implementation for x64 platforms that exploits x64 assembly,

4. An additional, optimized implementation for x64 platforms that exploits x64 assembly and public
key compression (§1.5).

5. An additional, optimized implementation for ARM64 platforms that exploits ARMvS assembly,

6. An additional, optimized implementation for ARM Cortex M4 platforms that exploits ARM thumb
assembly,

7. An additional, speed-optimized VHDL model for FPGA and ASIC platforms that parallelizes vari-
ous aspects of the isogeny computation and field operations, and

8. An additional, simple textbook implementation written exclusively in portable C. using elliptic
curves in short Weierstrass form.

All implementations except implementations number | and 8 are protected against timing and cache at-
tacks at the software level. Specifically, they avoid the use of secret address accesses and secret branches.

SIKE implementations: short keys,
slow computation

Scheme secret key | public key | ciphertext | shared secret

sk pk ct SS

SIKEp434 374 330 346 16
SIKEp503 434 378 402 24
SIKEp610 524 462 486 24
SIKEp751 644 564 596 32
SIKEp434_compressed 350 197 236 16
SIKEp503_compressed 407 225 280 24
SIKEp610_compressed 491 274 336 24
SIKEp751_compressed 602 335 410 32

Table 2.2: Size (in bytes) of inputs and outputs in SIKE.

Scheme ‘ KeyGen ‘ Encaps ‘ Decaps ‘

total

(Encaps + Decaps)

Optimized Implementation

SIKEp434 56,378 90,773 96,592 187,365
SIKEp503 85,744 140,781 149,972 290,753
SIKEp61® 160,401 294,628 296,577 591,205
SIKEp751 288,827 468,175 502,983 971,158
Additional implementation using x64 assembly
SIKEp434 5,927 9,681 10,343 20,024
SIKEp503 8,243 13,544 14,415 27,959
SIKEp61® 14,890 27,254 27,445 54,699
SIKEp751 25,197 40,703 43,851 84,553
Compressed SIKE implementation using x64 assembly
SIKEp434_compressed 10,158 15,120 11,077 26,197
SIKEp503_compressed 14,452 21,190 15,733 36,923
SIKEp610_compressed 26,360 37.470 20216 66,686
SIKEp751_compressed 40,935 63,254 46,606 109,860

Table 2.1: Performance (in thousands of cycles) of SIKE on a 3.4GHz Intel Core 17-6700 (Skylake)
processor. Cycle counts are rounded to the nearest 10° cycles.

Note:
Reference
implement
ation was
~15x slower

Hand-
optimized
assembly
code is
~10x faster

Scheme KeyGen | Encaps | Decaps static library
(stack) (stack) (stack) | speed (-03) | size (-0s)
Optimized Implementation
SIKEp434 8,040 8,360 8,744 105,474 54,170
SIKEp503 8,072 8,456 8,904 120,202 58,714
SIKEp610 | 12,008 12,408 12,936 163,312 56,400
SIKEp751 | 13,912 14,040 14,696 164,810 60,162
Additional implementation using x64 assembly
SIKEp434 8,136 8,456 8,840 108,208 56,672
SIKEp503 8,152 8,536 8,984 116,022 61,166
SIKEp610 | 13,536 12,512 12,112 135,470 68,494
SIKEp751 | 14,064 14,192 14,960 159,032 76,840
Compressed SIKE implementation using x64 assembly
SIKEp434 | 16,920 15,640 17,000 593,138 458,418
SIKEp503 | 18,872 17,560 19,128 648,404 509,636
SIKEp610 | 23,824 22,048 24,144 866,796 698,148
SIKEp751 | 28,024 27,936 28,320 1,296,540 1,070,688

Table 2.3: Peak memory usage (stack memory, in bytes) and static library size (in bytes) of the various im-
plementations of SIKE on a 3.4GHz Intel Core 17-6700 (Skylake) processor. Static libraries were obtained

v covtramvilinneg vvaath clanoa and Aantimiirinnag for conaad (02 and far c17a § ey

total

Scheme
(Encaps + Decaps)

KeyGen | Encaps | Decaps

Optimized implementation (portable)

Running on
SIKEp434 718 1.175 1,254 2,429
pd3 3 ARM Cortex-M4
SIKEpS503 1.076 1,773 1,886 3,659 w/o assembly
SIKEp610 | 2,011 3,701 3,722 7.423 code is way
SIKEp751 | 3,657 5915 6,353 12,267 too slow!

Additional implementation using ARMv7 Cortex-M4 assembly

SIKEp434 54 389 95 184
SIKEp503 76 125 133 257
SIKEp61@ 134 246 248 493
SIKEp751 229 371 399 770

Table 2.5: Performance (in millions of cycles) of SIKE on a 168MHz 32-bit ARM Cortex-M4 processor
on the STM32F407G-DISC1 board. Results are measured in ms and scaled to cycles using the nominal
processor frequency. Cycle counts are rounded to the nearest 10° cycles.

SIKE implementations: more recent work

» Faster algorithms for compressed SIKE
» More recent implementations using RISC-V processors, FPGAs

» List of publications at https://sike.org/

https://sike.org/

Security strength (1)

» (Supersingular) isogeny walk problem
» Meet-in-the-middle algorithm
» Quantum and classical algorithms for finding claws and collisions

» Recent work: accounting for the cost of memory (Jaques and Schanck (2019),
https://eprint.iacr.org/2019/103)

» However, breaking SIKE could be strictly easier than this problem,
because SIKE has public torsion-point information

» Recent work: torsion-point attacks, affecting variants of SIKE (but not SIKE itself)
(de Quehen et al (2021), https://eprint.iacr.org/2020/633)

https://eprint.iacr.org/2019/103
https://eprint.iacr.org/2020/633

Security strength (2)

» Quantum attacks

» For ordinary elliptic curves, can find isogenies in quantum subexponential time
(Childs et al (2010), https://arxiv.org/abs/1012.4019)

» For supersingular elliptic curves, this attack fails, b/c endomorphism ring is non-
commutative

» But, for supersingular curves, a variant of this attack is possible, using torsion-
point information. This affects variants of SIKE (but not SIKE itself) (Kutas et al
(2021), https://eprint.iacr.org/2021/282)

» Algorithms/complexity/number theory questions

» Deuring correspondence: supersingular curves €<-> maximal orders in quaternion
algebra (non-constructive)

» KLPT algorithm solves the quaternion analogue of the isogeny path problem (Kohel
et al (2014), https://eprint.iacr.org/2014/505)

» Reductions between path-finding, and computing the endomorphism ring
(Eisentraeger et al (2018), https://eprint.iacr.org/2018/371)

https://arxiv.org/abs/1012.4019
https://eprint.iacr.org/2021/282
https://eprint.iacr.org/2014/505
https://eprint.iacr.org/2018/371

Security strength (3)

» Active attacks, side-channel attacks, fault attacks, etc.
» Early work: Galbraith et al (2016), https://eprint.iacr.org/2016/859

Many more recent results, see list: htips://sike.org/

>
» Need to use the KEM version of SIKE, which is CCA-secure
4

Need to protect against side-channels, using tricks that are (mostly?) standard in
elliptic curve crypto

» Security proof: see Hofheinz et al (2017), https://eprint.iacr.org/2017/604

\

Theorem 1 ([19]). For any IND-CCA adversary B against KEM, issuing at most g (resp. qy) queries to
the random oracle G (resp. H), there exists an IND-CPA adversary A against PKE with

2qG+qH+l

Advgr=“4(B) < + 3 - Advige PH(A).

https://eprint.iacr.org/2016/859
https://sike.org/
https://eprint.iacr.org/2017/604

Target | Classical gate Classical security estimates
level | requirement Total time Gates x64 instructions
[48] [1] [23. Fig. 4(d)] 9]
memory 2% units | memory 2°° bits | memory 2*" units
SIKEp434 1 143 128 142 143
SIKEp503 2 146 152 169” 1697
SIKEp610 3 207 189 209 210
SIKEp751 S 272 - 263" 262

Table 5.1: Classical security estimates of the three SIKE parameterizations according to Adj et al. [1],
Jaques and Schanck [23], and Costello et al. [9]. Gate requirements and classical security estimates are all
expressed as their base-2 logarithms. The values marked with (*) are not found in the actual papers. In the
case of [9], we obtained the numbers for SIKEp503 using their scripts, where (for the half-sized isogenies
used in vOW) the optimal strategy for the 2-torsion resulted in 362 doublings and 189 4-isogenies, and the
optimal strategy for the 3-torsion yielded 229 triplings and 275 3-1sogenies. In the former scenario, a vOW
1sogeny required over 222 x64 instructions, and in the latter, over 2>* x64 instructions. In the case of [23],
the RAM operations for SIKEp503 and SIKEp751 were taken from the width-restricted table in §5.2.

Summary

» Keys are very small

» To make it run fast, and protect against side-channel attacks,
need non-trivial algorithms and assembly code

» Build on past experience with elliptic curve crypto
» (Remark: the arguments for SIKE are somewhat analogous to those for Falcon)

» Interesting possibility: SIKE+ECDH hybrids

» Security is not completely understood?

» Torsion-point attacks on variants of SIKE: these seem both new and fundamental?
https://eprint.iacr.org/2020/633 , https://eprint.iacr.org/2021/282

» Currently, these attacks don’t affect SIKE. If they do in the future, there are
plausible countermeasures: Costello (2021), https://eprint.iacr.org/2021/543

https://eprint.iacr.org/2020/633
https://eprint.iacr.org/2021/282
https://eprint.iacr.org/2021/543

