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Background on Isogenies

Rostovstev and Stolbunov’s cryposystem

”Constructing elliptic curve isogenies in quantum
subexponential time,” (Childs, Jao, Soukharev) 2011

”Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies,” (Jao, de Feo)
2011
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Elliptic Curve
Let K be a field.
An elliptic curve E is a nonsingular curve of genus 1 with
at least one K -rational point.

Weierstrass form

E : y2 + a1xy + a3xy = x3 + a2x2 + a4x + a6.

Short Weierstrass form (char(K ) 6= 2,3):

E : y2 = x3 + ax + b.
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Isogenies

An isogeny φ is a non-constant homomorphism
between elliptic curves given by rational maps.
Examples:

I Let φ : E → E be defined by
φ(P) = P + P + ...+ P = [n]P, for some integer n.

I Let E be defined over Fp. Let π : E → E where
π(x , y) = (xp, yp). The isogeny π is known as the
Frobenius.

Given a finite subgroup F of E(K ), there is an
isogeny φ : E → E/F such that ker(φ) = F .
If |F | = `, then the degree of φ is `, and φ is an
`-isogeny.
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Vélu’s formula

Let E be an elliptic curve with finite subgroup F .
Then there is an isogeny φ from E with kernel F .
For P = (xP , yP) /∈ F , let

φ(P) =

(
xP+

∑
Q∈F ,
Q 6=∞

(xP+Q−xQ), yP+
∑

Q∈F ,
Q 6=∞

(yP+Q−yQ)

)
.

If |F | = `, then φ is known as an `-isogeny.
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Vélu’s formula - alternate version

Let φ be an `-isogeny, with ` odd.
Let

D(x) =
∏

∞6=Q∈F ,

(x − xQ)

= x`−1 − σx`−2 + . . .

= g(x)2.

Then φ(x , y) = (R(x), yR′(x)), with

R(x) = `x−σ−(3x2+a)
D′(x)
D(x)

−2(x3+ax+b)
(D′(x)

D(x)

)′
.

So φ is completely determined by D(x) = g(x)2.
g(x) is known as the kernel polynomial
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Applications

SEA algorithm - count number of points on an elliptic
curve over finite field
Distortion maps - needed for pairing-based crypto
Efficient point multiplication - key operation in ECC
Avoid ZVP attack
Random number generator
Isogeny volcanoes
Security - isogenies transfer Discrete Log Problem
between curves
Public key cryptosystems
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Ordinary and Supersingular

Let K = Fp

Then #(E(Fp)) = p + 1− t , for some t ≤ 2
√

p.
If p|t , then E is supersingular, otherwise E is
ordinary
Most elliptic curves are ordinary
Supersingular curves have more special properties
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Hard Problem

Tate’s Theorem: E1 is Fp-isogenous to E2 if and only
if #(E1(Fp)) = #(E2(Fp)).

Hard Problem: Given #(E1(Fp)) = #(E2(Fp)), find
an isogeny from E1 to E2.

D. Moody (NIST) Isogenies and Quantum Computing Jan. 25, 2013 8 / 28



Isogeny Graphs
Fact: E1 and E2 are isomorphic if and only if
j(E1) = j(E2),

j(E) =
4a3

4a3 + 27b2 .

`-Isogeny Graph
I Vertices: j-invariants of elliptic curves
I Edges: Connect E1 and E2 if they are `-isogenous
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Isogeny Stars
Let E be an ordinary elliptic curve with
#(E(Fp)) = p + 1− t .
Let D = t2 − 4p. Let ` be a prime such that D is a
square mod `.
Choose parameters so that number of vertices is
prime.
Then the `-isogeny graph containing E is a cycle.
Example: Over F83, there are 7 curves with t = 9.
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Routes

There is a way to fix a direction on an isogeny star.
Let R`

i denote walking i steps on `-star

Key observation: R`
i R`′

j = R`′

j R`
i

Example:
I Start at 34, with i = 4, j = 3.

A step on a route is computing an isogeny.
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Rostovtsev and Stolbunov’s cryptosystem

Encryption:
I Agree on all parameters (Fp, `, `

′, t , etc...)
I Private key: route Rpriv
I Public key: curve E , and curve Epub = Rpriv (E)
I To send m, Bob picks random route Renc and

computes Eenc = Renc(Epub).
I Bob sends (s,E ′) to Alice, where s = m · j(Eenc) and

E ′ = Renc(E).
I Alice decrypts by computing j = j(Rpriv (E ′), and

m = s/j .
Diffie-Hellman-ish key exchange:

I E is fixed. Alice sends E1 = R1(E) to Bob. Bob
sends E2 = R2(E) to Alice.

I They can both compute Ekey = R1(E2) = R2(E1).
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Security

To break the system, given E1 and E2, need to find a
route R(E1) = E2.
– That is, compute an isogeny between E1 and E2.
Timings: For 128 bit security, ≈229 seconds to
encrypt/decrypt. (normal CPU)
The graph isn’t computable
Best attack is a meet-in-the-middle attack:
Galbraith’s algorithm, O( 4

√
p).

Mainly of theoretical interest.
Possible post-quantum cryptosystem.
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Childs, Jao, Soukharev

Quantum, subexponential algorithm to compute
(horizontal) isogenies.

Algorithm is Lp(
1
2 ,
√

3
2 +

√
2), with polynomial space

Assumes Generalized Riemann Hypothesis
Key Idea: reduce to Hidden Shift Problem
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Hidden Shift Problem

Let A be a finite abelian group, and S a finite set.
Let f0, f1 : A→ S be injective functions.
There is a hidden shift if

f1(x) = f0(xs)

for some s ∈ A.

Hidden Shift Problem (HSP)
Given A,S and f0, f1 with a hidden shift, find s.
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Representing Isogenies

Let φ : E → E ′ be an isogeny over Fp.
Recall #(E(Fp)) = #(E ′(Fp)) = p + 1− t . Let
D = t2 − 4p < 0.
Fact: When E is ordinary, End(E) is an order O in
K = Q(

√
D).

The isogeny φ is determined by E and ker(φ) (up to
isomorphism).
ker(φ) can be represented as an ideal b in O.

φ : E → Eb ←→ ker(φ)←→ b ⊆ OK
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Isogenies and Class Groups

φ : E → Eb ←→ ker(φ)←→ b ⊆ OK

Principal ideals (a) correspond to isomorphisms.
Thus, the class group acts on ordinary, isogenous
curves with the same endomorphism ring.
This defines an operator ∗

[b] ∗ j(E)→ j(Eb),

where [b] is the ideal class of b.
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Reducing Isogenies to HSP

Let φ : E0 → E1 be an isogeny.
Let b be the ideal corresponding to φ.
Let fi([x ])→ [x ] ∗ j(Ei), for i = 0,1.
Then

f1([x ]) = [x ] ∗ j(E1)

= [x ] ∗ ([b] ∗ j(E0))

= ([x ][b]) ∗ j(E0)

= f0([x ][b]).

Thus the isogeny problem reduces to the Hidden
Shift Problem.
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Solving the HSP

Evaluating f0 and f1
I Childs, Jao, and Soukharev – compute ∗ operator in

subexponential time
Solving HSP (using quantum computer)

I Kuperberg’s algorithm – faster running time,
superpolynomial space

I Regev’s algorithm – slower, but polynomial space
I Childs, Jao, Soukharev – fill in the gaps
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Conclusions

Assuming GRH, there is a subexpontial quantum
algorithm to compute isogenies.
With classical computers, isogeny problem is ”easier”
(p1/4 to p1/2) than discrete log, but situation is
reversed with quantum computers.
Actually, input to algorithm is End(E), or O.

I This is part of public parameters for all proposed
isogeny based cryptosystems.

For arbitrary, ordinary curves, there is a
subexponential (quantum) algorithm to compute
End(E), assuming the GRH.
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Last words?

Authors conclude: ”Since isogeny-based cryptosystems already
perform poorly at moderate security levels, any improved attacks
such as ours would seem to disqualify such systems from
consideration in a post-quantum world.”

Stolbunov: ”First of all, it is not clear whether the
superpolynomial quantum attack of Childs, Jao and Soukharev
will pose a realistic threat. The attack requires O(26

√
s log(s))

quantum gates. Physicists are in doubt about the possibility of
large-scale quantum computations, because of errors introduced
by the quantum decoherence. If no key length adjustment will be
needed to protect against the named attack, then the
isogeny-based schemes will offer, in general, shorter keys and
more efficient bandwidth usage, as compared to other
quantum-resistant hard problems. But this will come at a cost of
lower operational speeds.”

D. Moody (NIST) Isogenies and Quantum Computing Jan. 25, 2013 22 / 28



The Second Paper (Jao, de Feo)

Flaws of previous system:
I Not very efficient (229s for 128 bit security)
I Subexponential attack

New supersingular isogeny-based cryptosytem
I Way more efficient (60ms for 128 bit security)
I No subexponential attack known
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Supersingular Curves

Recall E is supersingular if #(E(Fp)) = p + 1− t ,
and p|t .
Supersingular curves are rare.
Endomorphism ring of E is an order in quaternion
algebra.
In particular, End(E) is not commutative.
All supersingular curves can be defined over Fp2 .
Can represent ker(φ) efficiently over Fp2 . This is not
possible for ordinary curves.

I This fact leads to increase in speed.
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Supersingular Graphs

`-isogeny graph is `+ 1-regular (assuming ` 6 |p).
The graph is an expander graph, or Ramanujan
graph.
Supersingular isogeny graph used for Charles,
Goren, Lauter’s hash function.

Let p = `eA
A `

eB
B f ± 1 be prime, for small primes `A, `B.

Usually this is bad, but we don’t need discrete log to
be hard.
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Key Exchange

E E/〈R〉

E/〈S〉 E/〈R, S〉

R = mAPA + nAQA

S = mBPB + nBQB

φA

φB

φ′A

φ′B

Let PA,QA be generators of E [`ea
A ], and analogously

for PB,QB.
Alice chooses random mA,nA and computes
φA : E → EA with kernel mAPA + nAQA.
Alice sends EA,φA(PB) and φA(QB) to Bob. Bob does
similarly.
Alice computes φ′A : EB → EAB with kernel
mAφB(PA) + nAφB(QA). Bob does similarly.
The key is j(EAB).
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Speed and Security

(We skip description of encryption system)
Best general algorithm to compute isogenies
between supersingular curves is O

(√
p log2 p

)
.

There is a classical ”claw” attack with O ( 4
√

p), and a
quantum ”claw” attack with O ( 6

√
p)

Benchmarks (on desktop):

Security 85 bits 128 bits 170 bits
Time (ms) 28 66 122
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Summary

Isogeny-based cryptosystems.
Subexponential attack on isogenies between elliptic
curves.
Jao, de Feo propose new supersingular cryptosytem

I No quantum attacks known (yet)
I Efficient

Conclusion: wait and see.
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