Outline

@ Background on Isogenies
@ Rostovstev and Stolbunov’s cryposystem

@ "Constructing elliptic curve isogenies in quantum
subexponential time,” (Childs, Jao, Soukharev) 2011

@ "Towards quantum-resistant cryptosystems from

supersingular elliptic curve isogenies,” (Jao, de Feo)
2011
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Elliptic Curve
Let K be a field.
An elliptic curve E is a nonsingular curve of genus 1 with

at least one K-rational point.
@ Weierstrass form

E:y?+aixy + asxy = X° + ax® + asx + as.
@ Short Weierstrass form (char(K) # 2, 3):

E:y?=x3+ax+b.
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Isogenies

@ Anisogeny ¢ is a non-constant homomorphism
between elliptic curves given by rational maps.
@ Examples:
» Let ¢ : E — E be defined by
¢(P) =P+ P+ ...+ P=[n]P, for some integer n.
» Let E be defined over .. Let 7 : E — E where
m(x,y) = (xP, yP). The isogeny = is known as the
Frobenius.
@ Given a finite subgroup F of E(K), there is an
isogeny ¢ : E — E/F such that ker(¢) = F.
@ If |F| = ¢, then the degree of ¢ is ¢, and ¢ is an
£-isogeny.
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Vélu’s formula

@ Let E be an elliptic curve with finite subgroup F.
Then there is an isogeny ¢ from E with kernel F.

@ For P=(xp,yp) ¢ F, let

$(P) = (XP+ > (Xpro—Xa) Ypt+ Y (YP+Q—YQ)> :

QeF, QE€F,
Q+#00 Q+#0c0

e If |[F| =/, then ¢ is known as an ¢-isogeny.
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Vélu’s formula - alternate version

@ Let ¢ be an /-isogeny, with ¢ odd.

@ Let
D(x) = H (x — xq)
00#£QEF,
= x1 _oxt2 4
= g(x)2.

@ Then ¢(x,y) = (R(x), yR'(x)), with

R(x) = Kx—a—(3x2+a)%—2(x3+ax+b)<gg;)l.

@ So ¢ is completely determined by D(x) = g(x)2.
@ g(x) is known as the kernel polynomial
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Applications

@ SEA algorithm - count number of points on an elliptic
curve over finite field

@ Distortion maps - needed for pairing-based crypto
@ Efficient point multiplication - key operation in ECC
@ Avoid ZVP attack

@ Random number generator

@ Isogeny volcanoes

@ Security - isogenies transfer Discrete Log Problem
between curves

@ Public key cryptosystems
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Ordinary and Supersingular

@ Then #(E(Fp)) =p+ 1 —t, forsome t < 2,/p.

@ If p|t, then E is supersingular, otherwise E is
ordinary

@ Most elliptic curves are ordinary
@ Supersingular curves have more special properties
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Hard Problem

@ Tate’s Theorem: E; is Fp-isogenous to E; if and only
it #(E1(Fp)) = #(Ea(Fp))-

@ Hard Problem: Given #(E;(Fp)) = #(E2(Fp)), find
an isogeny from E; to E,.
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Isogeny Graphs
@ Fact: Eq and E; are isomorphic if and only if
J(E1) = J(E2),
43°
(E)= ———5.
IE) = 21 a2
@ (-Isogeny Graph
» Vertices: j-invariants of elliptic curves
» Edges: Connect E; and E; if they are /-isogenous
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Isogeny Stars

@ Let E be an ordinary elliptic curve with
#(E(Fp)) =p+1-t.

@ Let D = t? — 4p. Let ¢ be a prime such that D is a
square mod /.

@ Choose parameters so that number of vertices is
prime.

@ Then the /-isogeny graph containing E is a cycle.

@ Example: Over FFg3, there are 7 curves with t = 9.
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Routes

@ There is a way to fix a direction on an isogeny star.
@ Let R denote walking i steps on ¢-star
® Key observation: R/R" = R’ Rf
@ Example:
» Start at 34, withi =4, =3.
@ A step on a route is computing an isogeny.
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Rostovtsev and Stolbunov’s cryptosystem

@ Encryption:

Agree on all parameters (Fp, ¢, ¢, t, etc...)

Private key: route Ry,

Public key: curve E, and curve Epyy = Rpriv(E)

To send m, Bob picks random route R.,c and
computes Egnc = Renc(Epub)-

» Bob sends (s, E’) to Alice, where s = m - j(Egnc) and

vV vy VvVvYy

E/ = Renc(E).
» Alice decrypts by computing j = j(Rpiv(E’), and
m=s/j.

@ Diffie-Hellman-ish key exchange:

» E is fixed. Alice sends E; = Ry(E) to Bob. Bob
sends E, = Ry(E) to Alice.
» They can both compute Exe, = Ri(E2) = Ra(Ey).
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Security

@ To break the system, given E; and E», need to find a
route R(Ey) = Es.
— That is, compute an isogeny between E; and E,.

@ Timings: For 128 bit security, ~229 seconds to
encrypt/decrypt. (normal CPU)

@ The graph isn’t computable

@ Best attack is a meet-in-the-middle attack:
Galbraith’s algorithm, O({/p).

@ Mainly of theoretical interest.
@ Possible post-quantum cryptosystem.
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i - Example Recomm. pub-  Operation Encryption Quantum
Hardpeoblen scheme  lic key size, bits  complexity overhead, bits  complexity
Integer 0.05(s + 14)* 50 s?
factoring ! RSA log(s + 14)2 9 log(s)® Q log(s)®

. 0.05(s + 14)* 8% 0.05(s + 14)* s
DLP in F} ? ElGamal ——— T oot S0 e ==
" amal iy O\iger) Terinr O \ieeer
Ell. curve DLP* ECIES 2 0(s%9) s o(s*)
Bash, callision  Metidels oy O(shash) 125?420 O(2"7% hash)
and preimage sign.
Linea code . - 5s
d;m drn.gs ¢ McEliece 2.25s5%log(s)?  O(s2log(s)?) 15slog(s) 0(205)
Lattice shortest
mh‘)r ;mhiu;ﬁ NTRU  3slog(s)+1000 O(slog(s)?)  2.5slog(s)+840 OQ(2%)
Isogeny s & (5.3 o2 log(s)— 6/ log(s)
S PE 1s-8log(s)-16 O(s>%) 4s-8log(s)-16 O (2 g )

Table 1.1: Comparison of hard problems used in cryptography, for the security level
of s bits. Provided values are approximated. All example schemes are public-key
encryption schemes, except for the Merkle’s digital signature scheme. In the column
“Recommended public key size” we assume that common system parameters (e.g.
the DLP group order) are not included in public keys. The “Operation complexity”
column shows the asymptotic number of bit operations in one encryption or signature
verification operation. The “Encryption overhead” column contains the difference
between the ciphertext length and the “default” message length (e.g. the RSA
message length is log(n) bits, where n is the modulus), or the length of a digital
signature for the Merkle’s scheme. This absolute overhead size is important when
sending short messages over low-bandwidth channels, for instance SMS messages.
The column " Quantum complexity” contains an O-bound for the expected number
of quantum gates needed to solve a random problem instance.
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Childs, Jao, Soukharev

@ Quantum, subexponential algorithm to compute
(horizontal) isogenies.

o Algorithm is Lp(3, %2 + v/2), with polynomial space
@ Assumes Generalized Riemann Hypothesis
@ Key Idea: reduce to Hidden Shift Problem
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Hidden Shift Problem

@ Let Abe a finite abelian group, and S a finite set.
@ Let fy, fi : A— S be injective functions.
@ There is a hidden shift if

fi (X) = fo(XS)

for some s € A.

Hidden Shift Problem (HSP)
Given A, S and fy, f; with a hidden shift, find s. J
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Representing Isogenies

@ Let ¢ : E — E' be an isogeny over Fp.
@ Recall #(E(Fp)) = #(E'(Fp)) =p+1—t Let

D=1t —4p<0.
@ Fact: When E is ordinary, End(E) is an order O in
K = Q(vD).

@ The isogeny ¢ is determined by E and ker(¢) (up to
isomorphism).
@ ker(¢) can be represented as an ideal b in O.

¢: E— Ey <— ker(¢) «— b C Ok
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Isogenies and Class Groups

¢: E— Ey <— ker(¢) «— b C Ok

@ Principal ideals (a) correspond to isomorphisms.

@ Thus, the class group acts on ordinary, isogenous
curves with the same endomorphism ring.

@ This defines an operator x
[6] * j(E) — j(Ey),

where [b] is the ideal class of b.
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Reducing Isogenies to HSP

@ Let ¢ : Eg — E; be an isogeny.
@ Let b be the ideal corresponding to ¢.
@ Let fi([x]) — [x] xj(E;), fori=0,1.

@ Then
fi([X]) = [x] = j(Eq1)

= [x] = ([6] = j(Eo))
= ([x][6]) * j(Eo)
= fo([x][6]).
@ Thus the isogeny problem reduces to the Hidden
Shift Problem.
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Solving the HSP

@ Evaluating fy and f;
» Childs, Jao, and Soukharev — compute x operator in
subexponential time
@ Solving HSP (using quantum computer)

» Kuperberg’s algorithm — faster running time,
superpolynomial space

» Regev’s algorithm — slower, but polynomial space

» Childs, Jao, Soukharev — fill in the gaps
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Conclusions

@ Assuming GRH, there is a subexpontial quantum
algorithm to compute isogenies.

@ With classical computers, isogeny problem is “easier”
(p'/4 to p'/?) than discrete log, but situation is
reversed with quantum computers.

@ Actually, input to algorithm is End(E), or O.

» This is part of public parameters for all proposed
isogeny based cryptosystems.

@ For arbitrary, ordinary curves, there is a
subexponential (quantum) algorithm to compute
End(E), assuming the GRH.
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Last words?

@ Authors conclude: "Since isogeny-based cryptosystems already
perform poorly at moderate security levels, any improved attacks
such as ours would seem to disqualify such systems from
consideration in a post-quantum world.”

@ Stolbunov: "First of all, it is not clear whether the
superpolynomial quantum attack of Childs, Jao and Soukharev
will pose a realistic threat. The attack requires O(28V $'°9(9))
quantum gates. Physicists are in doubt about the possibility of
large-scale quantum computations, because of errors introduced
by the quantum decoherence. If no key length adjustment will be
needed to protect against the named attack, then the
isogeny-based schemes will offer, in general, shorter keys and
more efficient bandwidth usage, as compared to other
quantume-resistant hard problems. But this will come at a cost of
lower operational speeds.”
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The Second Paper (Jao, de Feo)

@ Flaws of previous system:

» Not very efficient (229s for 128 bit security)
» Subexponential attack

@ New supersingular isogeny-based cryptosytem

» Way more efficient (60ms for 128 bit security)
» No subexponential attack known
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Supersingular Curves

@ Recall E is supersingular if #(E(Fp)) =p+1—1t,
and p|t.

@ Supersingular curves are rare.

@ Endomorphism ring of E is an order in quaternion
algebra.

@ In particular, End(E) is not commutative.
@ All supersingular curves can be defined over F ..

@ Can represent ker(¢) efficiently over F .. This is not
possible for ordinary curves.
» This fact leads to increase in speed.
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Supersingular Graphs

@ /-isogeny graph is ¢ + 1-regular (assuming ¢ /p).

@ The graph is an expander graph, or Ramanujan
graph.

@ Supersingular isogeny graph used for Charles,
Goren, Lauter’s hash function.

@ Let p=(3¢2f + 1 be prime, for small primes (4, (p.

@ Usually this is bad, but we don’t need discrete log to
be hard.
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Key Exchange
E —%—~ E/(R)

R=msPs+ nAQA
®B o
S =mpPp+npQp

E/(S)— E/(R,S)

o

@ Let P4, Qa be generators of E[¢3?], and analogously
for Pg, Qp.

@ Alice chooses random my, ng and computes
oa: E — Ej with kernel maPa + naQa.

@ Alice sends Ex,04(Pg) and ¢4(Qg) to Bob. Bob does
similarly.

@ Alice computes ¢/, : Eg — Exp with kernel
mA¢B(PA) + nA¢B(QA). Bob does Slmllarly

@ The key is /(EAB)
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Speed and Security

@ (We skip description of encryption system)

@ Best general algorithm to compute isogenies

between supersingular curves is O (\/f)log2 p).

@ There is a classical "claw” attack with O (y/p), and a

quantum “claw” attack with O (¥/p)

@ Benchmarks (on desktop):

Security

85 bits

128 bits

170 bits

Time (ms)

28

66

122
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Summary

@ |sogeny-based cryptosystems.

@ Subexponential attack on isogenies between elliptic
curves.
@ Jao, de Feo propose new supersingular cryptosytem

» No quantum attacks known (yet)
» Efficient

@ Conclusion: wait and see.
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